
Foundational Proof Certificates

Dale Miller

INRIA-Saclay and LIX/École Polytechnique
dale.miller@inria.fr

1 Introduction

Consider a world where exporting proof evidence into a well defined, universal,
and permanent format is taken as “feature zero” for computational logic sys-
tems. In such a world, provers will communicate and share theorems and proofs;
libraries will archive and organize proofs; and marketplaces of proofs would be
open to any prover that admits checkable proof objects. In that world, proof
checkers will be the new gatekeepers: they will be entrusted with the task of
checking that claimed proof evidence elaborates into a formal proof.

Logicians and proof theorist have worked on defining notions of proof that
are not based on technology and do not have version numbers attached to
them. There are many such proof systems in the literature: Hilbert-Frege proofs,
Gentzen’s sequent calculus proofs, Prawitz’s natural deduction proofs, etc. Each
of these proof systems have been given precise syntax and meaning. While such
well studied proof descriptions exists, a quick review of the current state of
automated and interactive theorem provers reveals that provers seldom output
their “proof evidence” using such proof systems. While there is a lot of interest
in having provers share and trust each other’s proofs (see, for example, [3, 10,
28]) most of that work has been based on building bridges between two specific
provers: a change in the version number of one prover can cause that bridge to
collapse.

The ProofCert project [22] has as one of its goals the development of a flexible
framework for defining the semantics of a wide range of proof evidence in such
a way that provers would define the meaning of their own proof evidence and
trusted proof checkers would be able to interpret that meaning and check its
formal correctness. To achieve this goal, we must first be able to separate proof
evidence from its provenance and then provide a formal and clear framework for
defining the semantics of proof evidence. The ProofCert project is focused on
the problem of checking formal proof: there is no assumption made that such
formal proofs are actually readable by humans.

2 Defining the semantics of proof evidence

The wide range of provers in use today represent their “proof evidence” in many
different ways. Such evidence might be resolution refutations, sets of links be-
tween atoms in a formula, natural deduction proofs, typed λ-terms, or proof



scripts. If we insist that provers output their proof evidence as a document that
could be transmitted and formally checked, we immediately face the problem
that there will necessarily be many different languages and structures describing
proof evidence. How can we deal with such a plurality of proof languages?

Similar situations have, of course, appeared and been addressed within com-
puter science. For example, consider the problem of defining the static and dy-
namic semantics of programming languages. Sometimes, a particular implemen-
tation of a given programming language actually defines that language’s syntax
and semantics. Such an ad hoc notion of language definition has largely been re-
placed by the use of formal frameworks where syntax and semantics are defined
in a universal and permanent (i.e.,, technology independent) fashion. For exam-
ple, today, it is common that a programming language’s syntax is given using the
formal framework of grammars. Using grammars, one describes “declaratively”
how to generate the set of legal programming language expressions. Advantages
of such a system are numerous: anyone can now implement their own parser
while knowing the specification of what they need to implement. Furthermore,
people can now attempt to automate the entire process of producing parsers
from grammars: in this way, the correctness of many parsers can be reduced to
the problem of establishing the correctness of the parser generator. The use of
such a framework does come with some costs. For example, context free gram-
mars can be ambiguous and it is undecidable in general to tell if a given such
grammar is ambiguous. Also, parser generators usually support restricted sets
of grammars (e.g., LALR(1), LR(k)) and the syntax of a given programming
language might have to be simplified to conform to various restrictions imposed
by generators.

Similar observations also hold for the problem of defining the dynamic se-
mantics of a programming language. It is common place (at least in the research
community) to formally define the semantics of a programming language us-
ing the “declarative” techniques found in operational semantics [16, 31]. Using
such semantic specifications it is possible to define a programming language pre-
cisely enough that various compilers and interpreters can be build for the same
language [27] and for formal theorems to be proved about them.

In the rest of this paper, we shall describe the foundational proof certificate
framework that can be used to define the semantics of a wide range of proof
evidence.

3 The chemistry of inference

The foundational approach to proof certificates is a framework where large in-
ference rules are built from small inference rules. In particular, we first identify
the “atoms” of inference and the “rules of chemistry” that then allow us to build
the “molecules” of inference.



3.1 The atoms: sequent calculus inference rules

The smallest elements of inference that we consider come from Gentzen’s sequent
calculus [11]: we shall assume that the reader is familiar with the basics of sequent
calculus.

While the foundational proof certificate framework can be described for both
classical and intuitionistic first order logics, we restrict our attention here to just
classical logic in order to simplify our presentation. Given this simplification,
we can also assume that formulas are placed into negation normal form (i.e.,
negations have only atomic scope) and if B is not atomic, the expression ¬B is
meant to denote the formula that results from using de Morgan dualities to push
the outermost negation in over all connectives. We can also limit ourselves to
using only one-sided, written ` ∆. Here, ∆ is a collection of formulas: Gentzen
used lists of formulas exclusively but we shall use multisets instead.

Gentzen’s sequent calculus had three groups of inference rules: structural
rules, identity rules, and introduction rules. We shall consider these rules as they
are applied to one-sided sequents.

The structural rules are the familiar rules of exchange, weakening, and con-
tractions. We shall not use the exchange rule here since it is meaningless when
used with multisets of formulas. Ultimately, weakening and contraction will not
be separate rules but will be built into other rules.

There are two identity rules, namely, the initial rule and the cut rule:

` ∆1, B ` ∆2,¬B
` ∆1, ∆2

cut ` B,¬B,∆ init

These rules are collectively called “identity” rules since they both involve check-
ing that a formula is identical to the negation normal form of another formula.
Notice that the weakening rule is built into the init rule. Gentzen proved that
all instances of these identity rules can be eliminated except for instances of the
init rule where B is an atomic formula.

The introduction rules give meaning to the logical connectives of logic. In
the version of classical logic we are considering, the only logical connectives are
∧, ∨, ∀, and ∃. We shall take the following familiar rules for the quantifiers:

` ∆, [y/x]B

` ∆,∀x.B
and

` ∆, [t/x]B

` ∆,∃x.B
.

For the propositional connectives, we find different possibilities. For example,
the one-sided sequent calculus rules most closely related to Gentzen’s two-sided
sequent calculus rules would be

` ∆,B ` ∆,C
` ∆,B ∧ C ∧ -Ia

` ∆,B
` ∆,B ∨ C ∨ -Ia

` ∆,C
` ∆,B ∨ C ∨ -Ia.

Other natural possibilities exist:

` ∆1, B ` ∆2, C

` ∆1, ∆2, B ∧ C
∧ -Im

` ∆,B,C
` ∆,B ∨ C ∨ -Im.



As we have learned from linear logic [12], the inference rules for conjunction and
disjunction (and their units) can come in two forms: the additive rules (displayed
above with the subscript a) and the multiplicative rules (displayed above with
the subscript m).

It is the case, of course, that when both contraction and weakening are avail-
able, the additive and the multiplicative versions of these rules are interchange-
able: as a result, most sequent calculus systems select one version of these rules
only. For example, many papers dealing with theorem proving in classical logic
commonly use the ∧ -Ia and ∨ -Im rules since they are invertible.

In our case, we are striving to collect a good set of atomic inferences and we
are helped if we can allow for having both additive and multiplicative versions of
these inference rules. We shall use the following technique to disambiguate when
these rules are applied. First, we introduce two versions of the conjunction ∧+,
∧− and two versions of the disjunction ∨+, ∨−. Second, we write the additive
and multiplicative inference rules as

` ∆,B ` ∆,C
` ∆,B ∧− C

` ∆,B
` ∆,B ∨+ C

` ∆,C
` ∆,B ∨+ C

` ∆1, B ` ∆2, C

` ∆1, ∆2, B ∧+ C
` ∆,B,C
` ∆,B ∨− C

Notice that the rules are the negative connectives ∧−, ∨− are invertible. (For
the sake of completeness, we introduce the polarized forms for the true and false
constants t−, t+, f−, f+ in the next section.) Third, if B is a first-order formula
(an “unpolarized” formula), we shall write B̂ to denote any (“polarized”) formula
that results from replacing all occurrences of ∧ and ∨ in B with one of the signed
versions of the corresponding connective. If B contains n occurrences of either
conjunction and disjunction, then B̂ ranges overs the 2n polarized forms of B.

3.2 The chemistry of inference: focused proof systems

While the sequent calculus rules capture tiny steps in deduction, it is poorly
equipped to capture larger scale notions of inference. What is needed is a means
of organizing these small rules into larger and more familiar rules. For example,
the work on uniform proofs in the late 1980’s [25, 26] provided a restriction on
sequent calculus proofs that allowed such proofs to capture the alternating phases
of goal-reduction and backchaining that takes place within logic programming
proof search. While uniform proofs could provide a description for the simple
structure of inference in logic programming, it was not flexible enough to capture
many other forms of inference in other computational logic systems. As Andreoli
[1] showed, when one moves the alternating phase structure of uniform proofs to
linear logic, a much more flexible means for structuring proofs arises. Andreoli
called his new proof system a focused proof system. Comprehensive focused proof
systems for classical and intuitionistic logic where later introduced by Liang and
Miller [17, 18]. We shall now present more details of LKF [18], a focused proof
system for classical logic.



` Θ ⇓ t+
` Θ ⇓B1 ` Θ ⇓B2

` Θ ⇓B1 ∧+ B2

` Θ ⇓Bi i ∈ {1, 2}
` Θ ⇓B1 ∨+ B2

` Θ ⇓ [t/x]B

` Θ ⇓ ∃x.B

` Θ ⇑ Γ
` Θ ⇑ f−, Γ

` Θ ⇑A,B, Γ
` Θ ⇑A ∨− B,Γ ` Θ ⇑ t−, Γ

` Θ ⇑A,Γ ` Θ ⇑B,Γ
` Θ ⇑A ∧− B,Γ

` Θ ⇑ [y/x]B,Γ

` Θ ⇑ ∀x.B, Γ
` Θ ⇑B ` Θ ⇑ ¬B

` Θ ⇑ · cut ` ¬Pa, Θ ⇓ Pa
init

` Θ,C ⇑ Γ
` Θ ⇑ C, Γ store

` Θ ⇑N
` Θ ⇓N release

` P,Θ ⇓ P
` P,Θ ⇑ · decide

Here, P is a positive formula; N is a negative formula; Pa is a (positive) atom; and
C is a positive formula or negated atom. Also, y is a variable that is not free in any
formula in the conclusion sequent of the ∀ introduction rule.

Fig. 1. LKF rules

We shall call a polarized formula positive if it is either atomic, or its top-level
connective is ∧+, ∨+, t+, f+, or ∃. Similarly, a polarized formula negative if it is
either a negated atomic, or its top-level connectives is ∧−, ∨−, t−, f−, or ∀.

The inference rules for LKF are given in Figure 1. Notice that these inference
rules involve sequents of the form ` Θ⇑Γ and ` Θ⇓B where Θ is a multiset of
formulas, Γ is a list of formulas, and B is a formula (all formulas are polarized
formulas). Such sequents can be approximated as the one-sided sequents ` Θ,Γ
and ` Θ,B, respectively. Furthermore, introduction rules are applied to either
the first element of the list Γ in the ⇑ sequent or the formula B in the ⇓ sequent.
This occurrence of the formula B is called the focus of that sequent. Proofs in
LKF are built using two kinds of alternating phases. The negative phase is com-
posed of invertible inference rules and only involves ⇑-sequents in the conclusion
and premise. The other phase is the positive phase: here, rule applications of
such inference rules often require choices. In particular, the introduction rule
for the disjunction requires selecting either the left or right disjunct and the
introduction rule for the existential quantifier requires selecting a term for in-
stantiating the quantifier. The initial rule can terminate a positive phase and
the cut rule can restart a negative phase. Finally, there are three structural rules
in LKF. The store rule recognizes that the first formula to the right of the ⇑ is
either a negative atom or a positive formula: such a formula does not have an
invertible inference rule and, hence, its treatment is delayed by storing it on the
left. The release rule is used when the formula under focus (i.e., the formula to
the right of the ⇓) is no longer positive: at such a moment, the phase changes
to the negative phase. Finally, the decide rule is used at the end of the negative
phase to start a positive phase by selecting a previously stored positive formula
as the new focus. Notice that the contraction rule is built into the decide rule.

It is proved in [18] that if B is a classical theorem and B̂ is any polarization of
B, then ` ·⇑B̂ has an LKF proof. Conversely, if ` ·⇑B̂ is provable in LKF then
B is a theorem. Thus the different polarizations do not change provability but



can radically change the structure of proofs. A simple induction on the structure
of an LKF proof of ` · ⇑ B (for some polarized formula B) reveals that every
formula that occurs to the left of ⇑ or ⇓ in one of its sequents is either a negated
atom or a positive formula. Also, it is immediate that the only occurrence of a
contraction rule is within the decide rule: thus, only the positive formulas are
contracted. Since there is flexibility in how formulas are polarized, the choice of
polarization can, at times, lead to greatly reduced opportunities for contraction.
When one is able to eliminate or constrain contractions, naive proof search can
sometimes become a decision procedure.

It is the negative and positive phases that are the macro or synthetic infer-
ence rules: these are the molecules of inference and are built from the atoms of
inference. Notice that phases are organized as follows:

· · ·

` Θi1 ⇑ · · · · ` Θij ⇑ ·
` Θ ⇑Ni

` Θ ⇓Ni
release · · ·

` Θ ⇓ P
` Θ ⇑ · decide

Specifically, a positive phase has as its root a decide rule and as leaves the
conclusions of release rules, while the negative phase ends with a sequent that
is the conclusion of a decide rule. Together, a negative phase above a positive
phase (a pair sometimes called a bi-pole) has a conclusion of the form ` Θ ⇑ ·
and premises of the form ` Θ′ ⇑ · where Θ is a sub-multiset of Θ′. Thus, the
sequence of decide and release rules determine boundaries between phases. A
phase may also end, of course, with the the introduction rules for t− and t+ and
the initial rule.

3.3 The engineering of inference rules

To illustrate the possibilities allowed by LKF, we now consider a couple of dif-
ferent approaches to building LKF proofs for a propositional tautology B.

One approach involves picking B̂ to be the polarized version of this formula
that contains only the negative connectives t−, f−, ∧−, ∨−. In this case, the only
LKF proofs of ` · ⇑ B̂ have exactly one negative phase: it has as a conclusion
` · ⇑ B̂ and has a possibly exponential number (in the size of B) of premises of
the form ` L1, . . . , Ln⇑·, where L1, . . . , Ln are literals (atoms or negated atoms).
Notice that the negative phase is completely determinate (computed functionally
from B̂). The premises of this negative phase are of the form ` L1, . . . , Ln⇑·. The
only way to prove such a sequent in LKF (without cut) is to use one occurrence
each of the decide and init rules.

Notice that this use of LKF and negative polarities leads to the following
protocol for proving a tautology: first use negative rules to compute essentially
the conjunctive normal form of B and then show that there are complementary
pairs in each of the remaining premises. Determining these complementary pairs
could be done by having some external source of information (like an oracle)



provide the right answer or by a search. Such a search would be rather shallow
and easily performed in a complete fashion. Thus, such a protocol could be used
to define a simple kind of proof certificate: the certificate would announce that the
negative connectives are to be used and that the complementary pair of literals
in all premises is either explicitly listed in that certificate or that the certificate
checker should do the search for complementary literals. If the certificate provides
the complementary pairs, then the certificate would be exponentially large (based
on the size of B) or it would be constant sized. In either case, the checking time
for this certificate would be exponential since checking involves computing the
conjunctive normal form of B.

Consider the appropriateness of such an approach to showing that the formula
B = (p ∨ (C ∨ ¬p)) is a tautology: here p is a propositional constant and C is a
possibly large propositional formula. Clearly, this formula is tautologous. While
using the protocol above to prove this formula would work, it is easy to describe
a more direct proof, one where we would like to insert some “clever” information
into the proof building stage. To do this, we use the positive connectives t+, f+,
∧+, ∨+. The “clever” choices are injected twice into the proof with the mark †.
The subformula C is avoided in this proof.

` B,¬p ⇓ p init

` B̂,¬p ⇓ (p ∨+ Ĉ) ∨+ ¬p
†

` B̂,¬p ⇑ ·
decide

` B̂ ⇑ ¬p
store

` B̂ ⇓ ¬p
release

` B̂ ⇓ (p ∨+ Ĉ) ∨+ ¬p
†

` B̂ ⇓ ·
decide

Clearly, different polarities can lead to rather different disciplines for orga-
nizing proofs. The negative phase does not listen to any outside oracles: instead,
it simply performs a (determinate) computation that carries a concluding se-
quent to a list of premises. On the other hand, the positive phase consumes
information—such as which branch of a disjunction or which instance of an
existential quantifier to consider. That information can be supplied, in princi-
ple, from either an oracle (by reading a proof certificate) or a non-deterministic
search. We now formalize more carefully how to integrate a proof certificate with
focused proof construction.

3.4 Clerks, experts, certificates, and indexes

In order to translate the information in a given proof certificate into instructions
to drive the kernel’s (that is, LKF’s) inference rules, we use the notion of clerks
and experts [7, 8]. An analogy can help motivate our proposed design. Imagine
an accounting office that needs to check that a certain collection of financial
documents represents a legal transaction. The office workers called experts are



truee(Ξ)

Ξ ` Θ ⇓ t+
Ξ1 ` Θ ⇓B1 Ξ2 ` Θ ⇓B2 ∧e(Ξ,Ξ1, Ξ2)

Ξ ` Θ ⇓B1 ∧+ B2

Ξ ′ ` Θ ⇓Bi i ∈ {1, 2} ∨e(Ξ,Ξ ′, i)

Ξ ` Θ ⇓B1 ∨+ B2

Ξ ′ ` Θ ⇓ [t/x]B ∃e(Ξ,Ξ ′, t)

Ξ ` Θ ⇓ ∃x.B

Ξ ′ ` Θ ⇑ Γ fc(Ξ,Ξ
′)

Ξ ` Θ ⇑ f−, Γ
Ξ ′ ` Θ ⇑A,B, Γ ∨c(Ξ,Ξ

′)

Ξ ` Θ ⇑A ∨− B,Γ

Ξ ` Θ ⇑ t−, Γ
Ξ1 ` Θ ⇑A,Γ Ξ2 ` Θ ⇑B,Γ ∧c(Ξ,Ξ1, Ξ2)

Ξ ` Θ ⇑A ∧− B,Γ

Ξ ′ ` Θ ⇑ [y/x]B,Γ ∀c(Ξ,Ξ ′) y not free in Ξ,Θ, Γ,B

Ξ ` Θ ⇑ ∀x.B, Γ

Ξ ′ ` Θ, 〈l,C〉 ⇑ Γ storec(Ξ,C,Ξ
′, l)

Ξ ` Θ ⇑ C, Γ store

Ξ1 ` Θ ⇑B Ξ2 ` Θ ⇑ ¬B cute(Ξ,Θ,Ξ1, Ξ2, B)

Ξ ` Θ ⇑ · cut

Ξ ′ ` Θ ⇑N releasee(Ξ,Ξ ′)

Ξ ` Θ ⇓N release
inite(Ξ,Θ, l) 〈l,¬Pa〉 ∈ Θ

Ξ ` Θ ⇓ Pa
init

Ξ ′ ` Θ ⇓ P decidee(Ξ,Θ,Ξ ′, l) 〈l,P 〉 ∈ Θ positive(P )

Ξ ` Θ ⇑ · decide

Fig. 2. LKFa: LKF augmented with premises that call clerks and experts.

given the responsibility of looking into the collection and extracting information:
they must decide into which series of transactions to dig and they need to know
when to release their findings for storage and later reconsideration. On the other
hand, the clerks are responsible for taking information released by the experts
and performing some computations on them, including their indexing and stor-
ing. Of course, the division of labor between experts and clerks arises from the
different characteristics of the positive and negative phases of proof structures
in LKF.

The inference rules in Figure 2 define LKF a, the augmented LKF proof sys-
tem. The augmentation adds three kinds of objects to LKF. The first is the actual
proof certificate as a term: the syntactic variable Ξ ranges over such certificates.
The second addition is the extra premises to all inference rules. The positive
inference rules have calls to experts: these are predicates that know how to ex-
tract information from proof certificates in order to supply information required
by a positive inference rule. Thus, the expert for the existential induction rule,
∃e(Ξ,Ξ ′, t) is supposed to hold when the certificate Ξ indicates that the term t
can be used to instantiate the corresponding ∃ quantifier: once that information
has been extracted, the remaining certificate is Ξ ′.



The third item that we need to add to the LKF a proof system was hinted at
with the office analogy above: when a clerk releases some information to be con-
sidered later, that item must be stored. Storing must of course support “recall”
(embodied by the decide inference rule). To do such store and recall flexibly, we
shall allow the office workers to agree on an actual indexing scheme for stored
formulas. Such index schemes can be various. For example, we have found all
the following indexes useful in difference styles of proof evidence: the formula
itself, a de Bruijn number, a formula occurrence, a link name in a proof net, a
line number in a Frege proof, and a clause number in a resolution refutation.
Notice that in LKF a, the context Θ does not denote a multiset of formulas but
rather a multiset of pairs 〈l,C〉 where l is an index and C is a formula. It is
the responsibility of the store clerk to compute an index for the formula that
is moved from the right to the left of the ⇑. Similarly, the decide rule selects a
formula from the Θ context by providing an index.

It now is clear what a proof certificate must contain. First, it must describe
both the datatypes used to build certificates and indexes. Second, it must provide
a method of polarizing a formula B into B̂. Third, it must provide the specifica-
tion of the various clerks and experts. These can be describe either as inference
rules themselves or, equivalently, as simple logic programs. Notice that the rules
in LKF a are always sound, no matter how one specifies the clerks and experts.
This soundness is an important feature for a checker that must be trusted even
though significant specifications (and code) are supplied from outside the kernel.

3.5 Examples of clerks and experts

We present here two examples of how one can specify clerks and experts. Given
our presentation to this point, it will probably be difficult to understand the
details of how these specifications work. More details can be found in [8] from
where these examples are taken. Here, we will limit ourselves to some observa-
tions. We shall also use λProlog syntax to provide the specifications of clerks
and experts: inference rules could have also been used but the λProlog syntax
is more compact (see also the discussion in Section 4).

cnf : cert idx : form -> index

∀C. storec(cnf, C, cnf, idx(C)). ∧c(cnf, cnf, cnf).

∀Θ∀l. inite(cnf, Θ, l). ∨c(cnf, cnf).

∀Θ∀l. decidee(cnf, Θ, cnf, l). fc(cnf, cnf).

releasee(cnf, cnf).

Fig. 3. A checker based on a simple decision procedure



A decision procedure as a proof certificate. Figure 3 present a concrete specifica-
tion of the decision procedure for propositional formulas described in Section 3.3.
Figure 3 first lists the constructors to certificates (type cert) and indexes (type
idx). In this case, there is a unique inhabitant of type cert and that is just the
name of this decision procedure (that is, this part of the certificate contains no
information). Similarly, the only way to build an index is to use the formula itself
(thereby trivializing the indexing mechanism here). Finally, the expert predicates
for the initial rule and the decide rule are not acting like experts at all: they
formally allow any context Θ and any index l to be related to the cnf certificate.
Such behavior is fine, however, since the rules in Figure 2 make additional checks
on Θ and l and these checks actually discover complementary pairs of literals.

This certificate illustrates an important aspect of our proposal for FPC:
some detail from a proof can, in principle, be elided and this may not cause
a problem for proof checking. In the case of this certificate format, there might
be several proofs of a sequent containing just literals since it might contain
many different complementary pairs. One could rewrite this certificate format
to explicitly contain a mating, that is a set of pairs of complementary literals that
spans all such clauses [2]. Such a mating is, of course, possibly exponentially large
with respect to the tautology being checked. But if we allow for some search, we
can do some “proof reconstruction” that involves searching for complementary
pairs. Allowing such reconstruction makes it possible for this FPC to have a
constant size instead of the possibly exponential size for recording an explicit
mating.

Resolution refutations as proof certificates. Figure 4 lists the constructors and
the clerks and experts that can be used to specify the semantics of a simple
form of resolution refutation. There are two key parts of this checker. First, if
two clauses C1 and C2 resolve to yield clause C0, then there is an LKF proof of
` ¬C1,¬C2 ⇑C0 that has decide depth 3 or less (the decide depth of a proof is
the maximum number of decide rules along a path in that proof). The first set
of specifications in Figure 4 describe how the clerks and experts can be specified
to check for the existence of such small proofs. Second, clauses are indexed by
natural numbers and the resolution refutation is a list of triples. Each of these
triples are checked using the specification above to confirm that it is a valid
binary resolution and then the cut-rule is used to integrate the resolvent into
the other clauses. The second set of clauses specify clerks and experts that direct
the LKF a kernel to trace out a proof whose backbone is a series of cuts all of
whose left premises are the small proofs that are responsible for checking claimed
binary resolutions. For more explanation about this certificate, see [8, 23].

4 A reference checker

Logic programming can sometimes be used to convert a declarative specification
into a prototype implementation. For example, versions of Prolog can be used to
directly convert certain grammar specifications into parsers [29]. Logic program-
ming languages such as Prolog, λProlog, and Elf have also been successfully used



idx : int -> index lit : form -> index

dl : list int -> cert ddone : cert

∀L. ∨c(dl(L), dl(L)). ∀L. truee(dl(L)).

∀L. fc(dl(L), dl(L)). ∀L. ∀c(dl(L), dl(L)).

∀C∀L. storec(dl(L), C, dl(L), lit(C)). ∀L. ∃e(dl(L), dl(L), T ).

∀L∀P∀Θ. decidee(dl(L), Θ, ddone, lit(P )). ∀L. ∧e(dl(L), dl(L), dl(L)).

∀I∀Θ. decidee(dl([I]), Θ, dl([]), idx(I)). ∀l∀Θ. inite(ddone, Θ, l).

∀I∀J∀Θ. decidee(dl([I, J ]), Θ, dl([J ]), idx(I)). ∀l∀L∀Θ. inite(dl(L), Θ, l).

∀I∀J∀Θ. decidee(dl([J, I]), Θ, dl([J ]), idx(I)). ∀L. releasee(dl(L), dl(L)).

rdone : cert rlist : list (int * int * int) -> cert

rlisti : int -> list (int * int * int) -> cert

∀R. fc(rlist(R), rlist(R)).

∀C∀l∀R. storec(rlisti(l, R), C, rlist(R), idx(l)).

truee(rdone).

∀I∀Θ. decidee(rlist([]), Θ, rdone, idx(I)) :- 〈idx(I), true〉 ∈ Θ.
∀I, J,K,R,C,N,Θ. cute(rlist([〈I, J,K〉|R]), Θ, dl([I, J ]), rlisti(K,R), N) :-

〈idx(K), C〉 ∈ Θ, negate(C,N).

Fig. 4. Resolution certificate definition in two parts

to provide direct implementations of the operational semantic specifications of
programming languages [5, 21, 20].

Given that the kernel of an FPC checker is specified by inference rules (such
as those in Figure 2) and that some forms of proof reconstruction should be sup-
ported during proof checking, a natural programming language for this reference
checker is a logic programming language. The λProlog programming language
[24] is a particularly good choice since it contains typing, abstract datatypes, and
higher-order programming in a style similar to ML—the first programming lan-
guage designed for implementing proof checkers [13]. λProlog goes beyond ML
by providing a logically clean notion of binding and (object-level) substitution.
Furthermore, λProlog implements both unification and backtracking search, two
features critical for implementing proof reconstruction. These two features allow
proof certificates to have the option of eliding some proof evidence in the hope
that the proof checker can reconstruct the missing details. Allowing a trade-off
between certificate size and checking (and proof reconstruction) time is an im-
portant feature for designing flexible proof certificate formats [8]. For example,
this trade-off makes it possible for the cnf certificate format to not explicitly
describe which literals are linked to which literals within a clause: without the
explicit information available, the logic programming implementation will do a
simple and bounded search to find such linkable literals.



5 Related and future work

Dependent typed λ-calculi have been proposed as frameworks for specifying proof
systems in a range of settings. The LF system [14] showed how natural deduction
system for intuitionistic logic could be given elegant and compact specifications.
A logic programming language Elf [30] has also been built on top of LF: checking
a proof in LF can then involve proving a goal in such a logic programming
language. Unification and backtracking search are trusted components for Elf
and partial proof reconstruction is possible in that setting.

The LF system (also called the λΠ-calculus) has been extended to allow
for deduction modulo [9]: in the resulting system, implemented as Dedukti [33],
functional computation replace the proof search style computations within Elf.
The LF system has also been extended with side conditions [32] and with external
predicates [15] in order to make that proof representation more expressive.

Actually, the LKF based kernel that we have described in this paper is not
the most expressive. We have experimented with writing kernels for both intu-
itionistic and classical logics that are based on linear logic principles as described
by the LKU focused proof system [19]. Using techniques developed by Chaud-
huri [6], it should be possible to get a completely functioning LKF kernel from
implementing just an LJF kernel.

Besides writing specifications of a number of other forms of proof evidence,
we also plan to develop a similar approach to proof involving inductive and
co-inductive definitions. With that extension, we should be able to check proof
evidence coming from model checkers and inductive theorem provers. We are
still doing the research to develop appropriate focusing systems for, essentially,
classical and intuitionistic versions of arithmetic: the linear logic theory of fixed
points developed by Baelde [4] is our current starting point.

Acknowledgments. The work presented in this paper has been done jointly with
Zakaria Chihani and Fabien Renaud and has been funded by the ERC Advanced
Grant ProofCert.

References

1. Jean-Marc Andreoli. Logic programming with focusing proofs in linear logic. J. of
Logic and Computation, 2(3):297–347, 1992.

2. Peter B. Andrews. Theorem proving via general matings. J. ACM, 28(2):193–214,
1981.

3. Michaël Armand, Germain Faure, Benjamin Grégoire, Chantal Keller, Laurent
Théry, and Benjamin Werner. A modular integration of SAT/SMT solvers to
coq through proof witnesses. In J.-P. Jouannaud and Z. Shao, editors, Certified
Programs and Proofs (CPP 2011), LNCS 7086, pages 135–150, 2011.

4. David Baelde. Least and greatest fixed points in linear logic. ACM Trans. on
Computational Logic, 13(1), April 2012.

5. P. Borras, D. Clément, Th. Despeyroux, J. Incerpi, G. Kahn, B. Lang, and V. Pas-
cual. Centaur: the system. In Third Annual Symposium on Software Development
Environments (SDE3), pages 14–24, Boston, 1988.



6. Kaustuv Chaudhuri. Classical and intuitionistic subexponential logics are equally
expressive. In Anuj Dawar and Helmut Veith, editors, CSL 2010: Computer Science
Logic, LNCS 6247, pages 185–199, Brno, Czech Republic, August 2010. Springer.

7. Zakaria Chihani, Dale Miller, and Fabien Renaud. Checking foundational proof cer-
tificates for first-order logic (extended abstract). In J. C. Blanchette and J. Urban,
editors, Third International Workshop on Proof Exchange for Theorem Proving
(PxTP 2013), volume 14 of EPiC Series, pages 58–66. EasyChair, 2013.

8. Zakaria Chihani, Dale Miller, and Fabien Renaud. Foundational proof certificates
in first-order logic. In Maria Paola Bonacina, editor, CADE 24: Conference on
Automated Deduction 2013, number 7898 in LNAI, pages 162–177, 2013.

9. Denis Cousineau and Gilles Dowek. Embedding pure type systems in the lambda-
pi-calculus modulo. In Simona Ronchi Della Rocca, editor, Typed Lambda Calculi
and Applications, 8th International Conference, TLCA 2007, Paris, France, June
26-28, 2007, Proceedings, LNCS 4583, pages 102–117. Springer, 2007.

10. Pascal Fontaine, Jean-Yves Marion, Stephan Merz, Leonor Prensa Nieto, and Al-
wen Fernanto Tiu. Expressiveness + automation + soundness: Towards combining
SMT solvers and interactive proof assistants. In Holger Hermanns and Jens Pals-
berg, editors, TACAS: Tools and Algorithms for the Construction and Analysis
of Systems, 12th International Conference, LNCS 3920, pages 167–181. Springer,
2006.

11. Gerhard Gentzen. Investigations into logical deduction. In M. E. Szabo, editor, The
Collected Papers of Gerhard Gentzen, pages 68–131. North-Holland, Amsterdam,
1969. Translation of articles that appeared in 1934-35.

12. Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50:1–102, 1987.
13. Michael J. Gordon, Arthur J. Milner, and Christopher P. Wadsworth. Edinburgh

LCF: A Mechanised Logic of Computation, LNCS 78. Springer, 1979.
14. Robert Harper, Furio Honsell, and Gordon Plotkin. A framework for defining

logics. Journal of the ACM, 40(1):143–184, 1993.
15. Furio Honsell, Marina Lenisa, Luigi Liquori, Petar Maksimovic, and Ivan

Scagnetto. LFP: a logical framework with external predicates. In LFMTP’12:
Proceedings of the seventh international workshop on Logical frameworks and meta-
languages, theory and practice, pages 13–22. ACM New York, 2012.

16. Gilles Kahn. Natural semantics. In Proceedings of the Symposium on Theoretical
Aspects of Computer Science, LNCS 247, pages 22–39. Springer, March 1987.

17. Chuck Liang and Dale Miller. Focusing and polarization in intuitionistic logic. In
J. Duparc and T. A. Henzinger, editors, CSL 2007: Computer Science Logic, LNCS
4646, pages 451–465. Springer, 2007.

18. Chuck Liang and Dale Miller. Focusing and polarization in linear, intuitionistic,
and classical logics. Theoretical Computer Science, 410(46):4747–4768, 2009.

19. Chuck Liang and Dale Miller. A focused approach to combining logics. Annals of
Pure and Applied Logic, 162(9):679–697, 2011.

20. Spiro Michaylov and Frank Pfenning. Natural semantics and some of its meta-
theory in Elf. In Lars Hallnäs, editor, Extensions of Logic Programming. Springer
LNCS, 1992.

21. Dale Miller. Formalizing operational semantic specifications in logic. Concurrency
Column of the Bulletin of the EATCS, October 2008.

22. Dale Miller. Proofcert: Broad spectrum proof certificates. An ERC Advanced
Grant funded for the five years 2012-2016, February 2011.

23. Dale Miller. A proposal for broad spectrum proof certificates. In J.-P. Jouannaud
and Z. Shao, editors, CPP: First International Conference on Certified Programs
and Proofs, LNCS 7086, pages 54–69, 2011.



24. Dale Miller and Gopalan Nadathur. Programming with Higher-Order Logic. Cam-
bridge University Press, June 2012.

25. Dale Miller, Gopalan Nadathur, Frank Pfenning, and Andre Scedrov. Uniform
proofs as a foundation for logic programming. Annals of Pure and Applied Logic,
51:125–157, 1991.

26. Dale Miller, Gopalan Nadathur, and Andre Scedrov. Hereditary Harrop formu-
las and uniform proof systems. In David Gries, editor, 2nd Symp. on Logic in
Computer Science, pages 98–105, Ithaca, NY, June 1987.

27. Robin Milner, Mads Tofte, and Robert Harper. The Definition of Standard ML.
MIT Press, 1990.

28. Lawrence C. Paulson and Jasmin Christian Blanchette. Three years of experience
with Sledgehammer, a practical link between automatic and interactive theorem
provers. In IWIL-LPAR, pages 1–11, 2010.

29. Fernando C. N. Pereira and David H. D. Warren. Definite clauses for language
analysis. Artificial Intelligence, 13:231–278, 1980.

30. Frank Pfenning. Elf: A language for logic definition and verified metaprogramming.
In 4th Symp. on Logic in Computer Science, pages 313–321, Monterey, CA, June
1989.

31. Gordon Plotkin. A structural approach to operational semantics. DAIMI FN-19,
Aarhus University, Aarhus, Denmark, September 1981.

32. Aaron Stump. Proof checking technology for satisfiability modulo theories. In
A. Abel and C. Urban, editors, Logical Frameworks and Meta-Languages: Theory
and Practice, 2008.

33. The Dedukti team. The Dedukti system and homepage. https://www.rocq.

inria.fr/deducteam/Dedukti/index.html, 2013.


