
1/32

Proofs for Satisfiability Problems

Marijn J.H. Heule

Joint work with

Armin Biere

∀X.Xπ, July 18, 2014



2/32

Outline

Introduction

Proof Systems

Proof Search

Proof Formats

Proof Production

Proof Consumption

Applications

Conclusions



3/32

Introduction



4/32

Introduction: “Small Example”

(x5 ∨ x8 ∨ x̄2) ∧ (x2 ∨ x̄1 ∨ x̄3) ∧ (x̄8 ∨ x̄3 ∨ x̄7) ∧ (x̄5 ∨ x3 ∨ x8) ∧
(x̄6 ∨ x̄1 ∨ x̄5) ∧ (x8 ∨ x̄9 ∨ x3) ∧ (x2 ∨ x1 ∨ x3) ∧ (x̄1 ∨ x8 ∨ x4) ∧
(x̄9 ∨ x̄6 ∨ x8) ∧ (x8 ∨ x3 ∨ x̄9) ∧ (x9 ∨ x̄3 ∨ x8) ∧ (x6 ∨ x̄9 ∨ x5) ∧
(x2 ∨ x̄3 ∨ x̄8) ∧ (x8 ∨ x̄6 ∨ x̄3) ∧ (x8 ∨ x̄3 ∨ x̄1) ∧ (x̄8 ∨ x6 ∨ x̄2) ∧
(x7 ∨ x9 ∨ x̄2) ∧ (x8 ∨ x̄9 ∨ x2) ∧ (x̄1 ∨ x̄9 ∨ x4) ∧ (x8 ∨ x1 ∨ x̄2) ∧
(x3 ∨ x̄4 ∨ x̄6) ∧ (x̄1 ∨ x̄7 ∨ x5) ∧ (x̄7 ∨ x1 ∨ x6) ∧ (x̄5 ∨ x4 ∨ x̄6) ∧
(x̄4 ∨ x9 ∨ x̄8) ∧ (x2 ∨ x9 ∨ x1) ∧ (x5 ∨ x̄7 ∨ x1) ∧ (x̄7 ∨ x̄9 ∨ x̄6) ∧
(x2 ∨ x5 ∨ x4) ∧ (x8 ∨ x̄4 ∨ x5) ∧ (x5 ∨ x9 ∨ x3) ∧ (x̄5 ∨ x̄7 ∨ x9) ∧
(x2 ∨ x̄8 ∨ x1) ∧ (x̄7 ∨ x1 ∨ x5) ∧ (x1 ∨ x4 ∨ x3) ∧ (x1 ∨ x̄9 ∨ x̄4) ∧
(x3 ∨ x5 ∨ x6) ∧ (x̄6 ∨ x3 ∨ x̄9) ∧ (x̄7 ∨ x5 ∨ x9) ∧ (x7 ∨ x̄5 ∨ x̄2) ∧
(x4 ∨ x7 ∨ x3) ∧ (x4 ∨ x̄9 ∨ x̄7) ∧ (x5 ∨ x̄1 ∨ x7) ∧ (x5 ∨ x̄1 ∨ x7) ∧
(x6 ∨ x7 ∨ x̄3) ∧ (x̄8 ∨ x̄6 ∨ x̄7) ∧ (x6 ∨ x2 ∨ x3) ∧ (x̄8 ∨ x2 ∨ x5)

I Does there exist an assignment satisfying all clauses?
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I How to make (compact) proofs for unsatisfiable problems?
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Proof Systems
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Proof Systems: Resolution Rule and Resolution Chains

Resolution Rule

(x ∨ a1 ∨ . . . ∨ ai) (x̄ ∨ b1 ∨ . . . ∨ bj)

(a1 ∨ . . . ∨ ai ∨ b1 ∨ . . . ∨ bj)

I Many SAT techniques can be simulated by resolution.

A resolution chain is a sequence of resolution steps.
The resolution steps are performed from left to right.

Example
I (c) := (ā ∨ b̄ ∨ c) � (ā ∨ b) � (a ∨ c)

I (ā ∨ c) := (ā ∨ b) � (a ∨ c) � (ā ∨ b̄ ∨ c)

I The order of the clauses in the chain matter



7/32

Proof Systems: Resolution Rule and Resolution Chains

Resolution Rule

(x ∨ a1 ∨ . . . ∨ ai) (x̄ ∨ b1 ∨ . . . ∨ bj)

(a1 ∨ . . . ∨ ai ∨ b1 ∨ . . . ∨ bj)

I Many SAT techniques can be simulated by resolution.

A resolution chain is a sequence of resolution steps.
The resolution steps are performed from left to right.

Example
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Proof Systems: Resolution Proofs versus Clausal Proofs
Consider the formula F := (b̄∨c)∧ (a∨c)∧ (ā∨b)∧ (ā∨b̄)∧ (a∨b̄)∧ (b∨c̄)

A resolution graph of F is:

b̄∨c a∨c ā∨b ā∨b̄ a∨b̄ b∨c̄

c

b̄
ā

ε

A resolution proof consists of all nodes and edges of the resolution graph
I Graphs from CDCL solvers have ∼ 400 incoming edges per node
I Resolution proof logging can heavily increase memory usage (×100)

A clausal proof is a list of all nodes sorted by topological order
I Clausal proofs are easy to emit and relatively small
I Clausal proof checking requires to reconstruct the edges (costly)
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Proof Systems: Extended Resolution and Generalizations

Extended Resolution Rule

Given a Boolean formula F without the Boolean variable x , the clauses
(x ∨ ā ∨ b̄) ∧ (x̄ ∨ a) ∧ (x̄ ∨ b) are redundant with respect to F .

I All existing techniques can be simulated by extended resolution
I For several techniques it is not known how to do the simulation

Blocked Clauses [Kullmann’99]

A clause C is blocked on literal l ∈ C w.r.t. a formula F is all resolvents
of C and D with l̄ ∈ D are tautologies.

Example

Consider the formula F = (x̄ ∨ a) ∧ (x̄ ∨ b). Clause (x ∨ ā ∨ b̄) is blocked
on x with respect to F , because (x ∨ ā ∨ b̄) �x (x̄ ∨ a) = (ā ∨ b̄ ∨ a) and
(x ∨ ā ∨ b̄) �x (x̄ ∨ b) = (ā ∨ b̄ ∨ b) are both tautologies.

Theorem: Addition of an arbitrary blocked clause preserves satisfiability.
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Proof Systems: Pigeon Hole Principe Proofs

Classic problem: Can n pigeons be in n − 1 pigeon holes?

n − 1 holes: . . .

n pigeons: . . .

Hard for resolution: proofs are exponential in size!

ER proofs can be exponentially smaller [Cook’76]
I reduce a problem with n pigeons and n − 1 holes
into a problem with n − 1 pigeons and n − 2 holes
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Proof Search
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Proof Search: Conflict-Driven Clause Learning (CDCL)

The leading search paradigm is conflict-driven clause learning:
I During each step the current assignment is extended;
I If the assignment is falsified a conflict clause is computed;
I Each conflict clause can be expressed as a resolution chain;
I Decisions are based on variables in recent conflict clauses.

CDCL solvers use lots of pre- or in-processing techniques:
I Most techniques can be expressed using resolution chains;
I Weakening techniques can be ignored for UNSAT proofs;
I Some techniques are even difficult to express using
extended resolution and its generalizations: e.g. Gaussian
elimination, cardinality resolution, and symmetry breaking.
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Proof Formats
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Proof Formats: The Input Format DIMACS

E := (b̄ ∨ c) ∧ (a ∨ c) ∧ (ā ∨ b) ∧ (ā ∨ b̄) ∧ (a ∨ b̄) ∧ (b ∨ c̄)

The input format of SAT solvers is known as DIMACS

I header starts with p cnf followed by
the number of variables (n) and the
number of clauses (m)

I the next m lines represent the clauses
I positive literals are positive numbers
I negative literals are negative numbers
I clauses are terminated with a 0

p cnf 3 6
-2 3 0
1 3 0
-1 2 0
-1 -2 0
1 -2 0
2 -3 0

Most proof formats use a similar syntax.
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Proof Formats: TraceCheck Overview

TraceCheck is the most popular resolution-style format.

E := (b̄ ∨ c) ∧ (a ∨ c) ∧ (ā ∨ b) ∧ (ā ∨ b̄) ∧ (a ∨ b̄) ∧ (b ∨ c̄)

TraceCheck is readable and resolution chains make it relatively compact

〈trace〉 = {〈clause〉}
〈clause〉 = 〈pos〉〈literals〉〈antecedents〉
〈literals〉 = “ ∗ ” | {〈lit〉}“0”

〈antecedents〉 = {〈pos〉}“0”

〈lit〉 = 〈pos〉 | 〈neg〉
〈pos〉 = “1” | “2” | · · · | 〈max−idx〉
〈neg〉 = “− ”〈pos〉

1 -2 3 0 0
2 1 3 0 0
3 -1 2 0 0
4 -1 -2 0 0
5 1 -2 0 0
6 2 -3 0 0
7 -2 0 4 5 0
8 3 0 1 2 3 0
9 0 6 7 8 0



16/32

Proof Formats: TraceCheck Examples

TraceCheck is the most popular resolution-style format.

E := (b̄ ∨ c) ∧ (a ∨ c) ∧ (ā ∨ b) ∧ (ā ∨ b̄) ∧ (a ∨ b̄) ∧ (b ∨ c̄)

TraceCheck is readable and resolution chains make it relatively compact

The clauses 1 to 6 are input clauses
Clause 7 is the resolvent 4 and 5:

I (b̄) := (ā ∨ b̄) � (a ∨ b̄)

Clause 8 is the resolvent 1, 2 and 3:
I (c) := (b̄ ∨ c) � (ā ∨ b) � (a ∨ c)

I NB: the antecedents are swapped!
Clause 9 is the resolvent 6, 7 and 8:

I ε := (b ∨ c̄) � (b̄) � (c)

1 -2 3 0 0
2 1 3 0 0
3 -1 2 0 0
4 -1 -2 0 0
5 1 -2 0 0
6 2 -3 0 0
7 -2 0 4 5 0
8 3 0 1 2 3 0
9 0 6 7 8 0
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Proof Formats: TraceCheck Don’t Cares

Support for unsorted clauses, unsorted antecedents and omitted literals.

I Clauses are not required to be sorted based on the clause index

8 3 0 1 2 3 0
7 -2 0 4 5 0

≡ 7 -2 0 4 5 0
8 3 0 1 2 3 0

I The antecedents of a clause can be in arbitrary order

7 -2 0 5 4 0
8 3 0 3 1 2 0

≡ 7 -2 0 4 5 0
8 3 0 1 2 3 0

I For learned clauses, the literals can be omitted using *

7 * 5 4 0
8 * 3 1 2 0

≡ 7 -2 0 4 5 0
8 3 0 1 2 3 0
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Proof Formats: Reverse Unit Propagation (RUP)

Unit Propagation
Given an assignment ϕ, extend it by making unit clauses true
— until fixpoint or a clause becomes false

Reverse Unit Propagation (RUP)
A clause C = (l1 ∨ l2 ∨ · · · ∨ lk) has reverse unit propagation
w.r.t. formula F if unit propagation of the assignment
ϕ = C̄ = (l̄1 ∧ l̄2 ∧ . . . ∧ l̄k) on F results in a conflict.
We write: F ∧ C̄ `1 ε

A clause sequence C1, . . . ,Cm is a RUP proof for formula F

I F ∧ C1 ∧ · · · ∧ Ci−1 ∧ C̄i `1 ε

I Cm = ε
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Proof Formats: RUP, DRUP, RAT, and DRAT

RUP and extensions is the most popular clausal-style format.

E := (b̄ ∨ c) ∧ (a ∨ c) ∧ (ā ∨ b) ∧ (ā ∨ b̄) ∧ (a ∨ b̄) ∧ (b ∨ c̄)

RUP is much more compact than TraceCheck because it does not
includes the resolution steps.

〈proof〉 = {〈lemma〉}
〈lemma〉 = 〈delete〉{〈lit〉}“0”

〈delete〉 = “” | “d”

〈lit〉 = 〈pos〉 | 〈neg〉
〈pos〉 = “1” | “2” | · · · | 〈max− idx〉
〈neg〉 = “− ”〈pos〉

-2 0
3 0
0

E ∧ (b) `1 ε

E ∧ (b̄) ∧ (c̄) `1 ε

E ∧ (b̄) ∧ (c) `1 ε
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Proof Formats: Open Issues and Challenges

How get useful information from a proof?
I Clausal or variable core
I Resolution proof from a clausal proof
I Interpolant
I Proof minimization
I Inside the SAT solver or using an external tool?
I What would be a good API to manipulate proofs?

How to store proofs compactly?
I Question is important for resolution and clausal proofs
I Current formats are "readable" and hence large
I Time for a binary format? How much can be saved?
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Proof Production
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Producing Resolution Proofs

Producing a resolution proof from a SAT solver can hard
I Expressing some powerful techniques in CDCL solvers as
resolution chains is non-trivial (e.g. clause minimization),
both figuring out the antecedents and the resolution order;

I Storing the resolution graph requires a lot of memory and
requires techniques to reduces the memory consumption;

I It is not clear how to deal with techniques that go beyond
resolution (e.g. bounded variable addition).
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Producing Clausal Proofs

In most cases, emitting a clausal proof is easy and cheap
I Learning: Add a clause to the proof;
I Strengthening: Add the shortened clause, delete original;
I Weakening: Delete the clause;
I Works for several techniques based on extended resolution;
I Dump all actions directly to disk, no memory overhead.

For some techniques it is not known how to do it elegantly
I in particular: Gaussian elimination, cardinality resolution,
and symmetry breaking.
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Producing Proofs with Generalized Extended Resolution

ā∨b̄∨c̄ a∨d b∨d c∨d a∨e b∨e c∨e d̄∨ē

f ∨a
f ∨b

f ∨c f̄ ∨d
f̄ ∨e

f

ε



25/32

Proof Consumption
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Proof Consumption

Resolution Proofs

Validating resolution proofs consists of checking whether the
added clauses can be constructed from the list of antecedents.

I Validation can be challenging due to the enormous size of
proofs, i.e., file I/O costs are much higher than CPU time.

Clausal Proofs

Validating resolution proofs consists of finding the antecedents.
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Reconstructing a Resolution Graph from a Clausal Proof

Consider the resolution graph
on the left. The clausal proof
is {(b̄), (ā), (c), ε}.

One can obtain smaller
cores using reconstruction
heuristics [FMCAD13]. b̄∨c a∨c ā∨b ā∨b̄ a∨b̄ b∨c̄

c

b̄
ā

ε

b̄∨c a∨c ā∨b ā∨b̄ a∨b̄ b∨c̄

c

b̄
ā

ε Reconstruction starts
w/o incoming edges and
traverses the proof in
reverse order and marks
using conflict analysis.
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ā

ε Reconstruction starts
w/o incoming edges and
traverses the proof in
reverse order and marks
using conflict analysis.



27/32

Reconstructing a Resolution Graph from a Clausal Proof

Consider the resolution graph
on the left. The clausal proof
is {(b̄), (ā), (c), ε}.
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ā

ε
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Applications



29/32

Applications

Validating the output of SAT solvers:
I Voluntary during SAT Competition (SC) 2007, 2009, 2011;
I Mandatory during SC 2013 (DRUP) and 2014 (DRAT);
I Validating output is about as expensive as SAT solving;
I Debug SAT solvers especially in combination with fuzzing.

Produce unsatisfiable cores:
I Useful for many applications: minimal unsatisfiable core
extraction, MaxSAT, diagnosis, model checking, and SMT.

Resolution proofs are useful for extracting interpolants:
I However, resolution proofs are huge and hard to obtain;
I This was the state-of-the-art until the invention of IC3.



30/32

Conclusions
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Conclusions

Proofs of unsatisfiability useful for several applications:
I Validate results of SAT solvers;
I Extracting minimal unsatisfiable cores;
I Computing Interpolants;
I Tools that use SAT solvers, such as theorem provers.

Challenges:
I Reduce size of proofs on disk and in memory;
I Reduce the cost to validate clausal proofs;
I How to deal with Gaussian elimination, cardinality
resolution, and symmetry breaking?
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Thanks!
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