SAT-Based Model Checking with Interpolation

Orna Grumberg

Technion, Haifa, Israel

iPRA workshop
July 2014

The beautiful slides are mostly borrowed from Yakir Vizel

Focus of the talk

- Interpolants in the propositional logic and their use in verification
- Interpolation for other logics is used, for instance, for software verification
- Linear arithmetic, Reals, and others

Model Checking

- Given a system and a specification, does the system satisfy the specification.

Outline

- Background on model checking
- SAT-based model checking with interpolation
- Model checking with interpolation sequence
- Model checking with backward and forward interpolations

System model

Modeling

- System is modeled as (V,INIT,T), where:
$-V$ is a finite set of variables
- S - set of states - all valuations of V
- INIT $\in 2^{V}$ is the set of initial states
$-T \subseteq 2^{v} \times 2^{V}$ is the set of transitions
- A safety property of the form AG P
- "P holds in every reachable state of the system"
- P is a formula over V

Translation to Propositional Formulas

- Four states:
- Two Boolean variables: $v_{1} v_{2}$

- INIT: $\neg v_{1}$
- T:
- $v_{1}^{\prime}=\neg v_{1} \vee\left(v_{1} \wedge v_{2}\right)$
- $v_{2}^{\prime}=\left(v_{1} \wedge v_{2}\right)$
- $P: \neg v_{1} \vee \neg v_{2}\left(B a d=\neg P=v_{1} \wedge v_{2}\right)$

Example

T is a conjunction of constraints, one per component.

$$
\begin{gathered}
T=\wedge\left\{\begin{array}{l}
g=a \wedge b, \\
p=g \vee c, \\
c^{\prime}=p
\end{array},\right.
\end{gathered}
$$

Reachability Analysis

- Problem definition:
- Does the transition system have a finite run ending in a state satisfying $\rightarrow P$?
- More precisely, is there a sequence of states So...sk s.t.:
- $s_{0} \in I$ and $s_{k} \in \neg P$
- for all $0 \leq i<k, \quad\left(s_{i}, s_{i+1}\right) \in T$
- Using automata-theoretic methods, model checking safety properties reduces to reachability analysis.

Forward Reachability Analysis

Does AG P hold?

Termination when

- either a bad state satisfying $\neg p$ is found
- or a fixpoint is reached: $R_{j} \subseteq \cup_{i=0, j-1} R_{i}$

Main limitation

The state explosion problem:
Space and time requirements grow with the size of the model

SAT-based Model Checking

Main idea

- Translate the model and the specification to propositional formulas
- Use efficient tools (SAT solvers) for solving the satisfiability problem
- At the beginning it was mainly used for finding CEXs

DPLL-style SAT solvers

 GRASP, CHAFF, MiniSAT, Glucose- Objective:
- Check whether a CNF formula is satisfiable or not
- Either return a satisfying assignment
- Or "UNSAT" and a refutation proof
- Approach:
- Decision: Choose arbitrary variable+value for an unassigned variable
- Propagate implications
- Add conflict clauses to avoid rechecking assignments

Circuit to SAT

Can the circuit output be 1?

Bounded model checking

- Unfold the model k times:

Biere, et al. TACAS99

- Use SAT solver to check satisfiability of

$$
I^{\langle 0\rangle} \wedge U \wedge \neg P^{〔 k\rangle}
$$

- If unsatisfiable:
- property has no counterexample of length k
- can produce a refutation proof

Bounded Model Checking

$\operatorname{INIT}\left(\mathrm{V}^{0}\right) \wedge T\left(\mathrm{~V}^{0}, \mathrm{~V}^{1}\right) \wedge \neg P\left(\mathrm{~V}^{1}\right)$

Bounded Model Checking

$\operatorname{INIT}\left(V^{0}\right) \wedge T\left(V^{0}, V^{1}\right) \wedge T\left(V^{1}, V^{2}\right) \wedge \neg P\left(V^{2}\right)$

Bounded Model Checking

$\operatorname{INIT}\left(V^{0}\right) \wedge T\left(V^{0}, V^{1}\right) \wedge \ldots \wedge T\left(V^{k-1}, V^{k}\right) \wedge-P\left(V^{k}\right)$

Bounded Model Checking

Terminates

- with a counterexample or
- with time- or memory-out

The method is suitable for falsification, not verification

Outline

- Background on model checking
- SAT-based model checking with interpolation
- Model checking with interpolation sequence
- Model checking with backward and forward interpolations

SAT-Based Verification

unbounded model checking

- Uses BMC for falsification
- Simulates forward reachability analysis for verification
- Identifies a termination condition
- all reachable states has been found: "fixpoint"

Interpolants

Craig 57

- Given an unsatisfiable pair (A, B) of propositional formulas
$-A(X, Y) \wedge B(Y, Z)$ is unsatisfiable
- There exists a formula I such that:
$-A \Rightarrow I$
$-I \wedge B$ is unsatisfiable
- I is over Y, the common variables of A and B

Interpolation (cont.)

Interpolants from proofs

- When $A \wedge B$ is unsatisfiable, SAT solvers return a proof of unsatisfiability in the form of a resolution graph
- Given a resolution graph, I can be derived in linear time

Pudlak,Krajicek 97, McMillan 03

ITP - Interpolation-based MC McMillan, CAV 2003

- I over-approximates the states reachable from INIT in one transition
- It satisfies P and cannot reach a bad state in two transitions or less

ITP - Interpolation-based MC McMillan, CAV 2003

- I is fed back to the formula
- A new interpolant I' is computed
- Iterative process

Using Interpolation ($\mathrm{i}=1$)

Using Interpolation (i=2)

$\operatorname{INIT}\left(V_{0}\right) \wedge T\left(V_{0}, V_{1}\right) \wedge T\left(V_{1}, V_{2}\right) \wedge\left(\neg q\left(V_{1}\right) \vee \neg q\left(V_{2}\right)\right)$

I_{1}

$I_{1}{ }^{\prime}\left(V_{0}\right) \wedge T\left(V_{0}, V_{1}\right) \wedge T\left(V_{1}, V_{2}\right) \wedge\left(\neg q\left(V_{1}\right) \vee \neg q\left(V_{2}\right)\right)$
$I_{k}{ }^{\prime}\left(V_{0}\right) \wedge T\left(V_{0}, V_{1}\right) \wedge T\left(V_{1}, V_{2}\right) \wedge\left(\neg q\left(V_{1}\right) \vee \neg q\left(V_{2}\right)\right)$

- In ITP, short BMC formulas can prove the nonexistence of long CEXs
- INIT is replaced by I_{k} which overapproximates S_{k}
- If a satisfying assignment is found, the counterexample might be spurious
- Since INIT is over-approximated
- Increase k and start with the original INIT
- A fixpoint is checked whenever a new interpolant is computed
- For iteration i, every new interpolant is checked for inclusion in all previously computed interpolants for the same i
$-I_{n} \Rightarrow$ INIT $\vee V_{j=1, n-1} I_{j}$
- In ITP, a computed interpolant is fed back into the BMC problem
- BMC problem is solved with a SAT solver

Problems:

1. "Big" interpolant causes the BMC problem to be hard to solve
2. Non-CNF interpolant needs to be translated to CNF

Outline

- Background on model checking
- SAT-based model checking with interpolation
- Model checking with interpolation sequence
- Model checking with backward and forward interpolations

Interpolation-Sequence

- If $A_{1} \wedge A_{2} \wedge \ldots \wedge A_{k}$ is unsatisfiable, then there exists an interpolation-sequence $I_{0}, I_{1}, \ldots, I_{k+1}$ for $\left(A_{1}, \ldots, A_{k}\right)$ such that:

$$
\begin{gathered}
I_{0}=T \text { and } I_{k+1}=F \\
I_{j} \wedge A_{j+1} \Rightarrow I_{j+1}
\end{gathered}
$$

I_{j} - over common variables of $A_{1}, \ldots, A j$ and A_{j+1}, \ldots, A_{k}

- Each I_{j} can be computed as the interpolant of $A=A_{1} \wedge \ldots \wedge A_{j}$ and $B=A_{j+1} \wedge \ldots \wedge A_{k}$
- All I_{j} 's should be computed on the same resolution graph

Reachability with Interpolation-Sequence

Vizel , Grumberg, FMCAD 2009

- Unsatisfiable BMC formula partitioned in the following manner:

Reachability with Interpolation-Sequence

$$
\begin{gathered}
I_{0}=T \quad \text { and } I_{k+1}=F \\
I_{j} \wedge A_{j+1} \Rightarrow I_{j+1}
\end{gathered}
$$

I_{j} - over common variables of A_{1}, \ldots, A_{j} and $A_{j+1} \ldots, A_{k}$

Reachability with
 Interpolation-Sequence

- Compute a sequence of reachable states from BMC formulas
- Forward Sequence: 〈 $\left.\mathrm{F}_{0}, \mathrm{~F}_{1}, \ldots, F_{n}\right\rangle$
- Sequence is over-approximated
$-F_{i}(\vee) \wedge T\left(V, V^{\prime}\right) \Rightarrow F_{i+1}\left(V^{\prime}\right)$
$-F_{i} \Rightarrow P$
- Integrated into the BMC loop to detect termination

Using Interpolation-Sequence

The Analogy to Forward Reachability Analysis

Checking if a "fixpoint" has been reached

- $F_{n} \Rightarrow V_{j=1, n-1} F_{j}$
- Similar to checking fixpoint in forward reachability analysis :

$$
R_{k} \subseteq U_{j=1, k-1} R_{j}
$$

- But here we check inclusion for every $2 \leq k \leq n$
- No monotonicity because of the approximation
- "Fixpoint" is checked with a SAT solver

Outline

- Background on model checking
- SAT-based model checking with interpolation
- Model checking with interpolation sequence
- Model checking with backward and forward interpolations

Forward Reachability Analysis

Interpolants

- Given an unsatisfiable pair (A, B) of propositional formulas
- Then, there exists a formula I such that: $-A \Rightarrow I$
$-I \wedge B$ is unsatisfiable
- I is over the common variables of A and B
- $I=\operatorname{Itp}(A, B)$

Approximated Forward Reachability

- $F(V)$ - a set of states
- For the unsatisfiable formula $F(V) \wedge T\left(V, V^{\prime}\right) \wedge \neg P\left(V^{\prime}\right)$, define:

$$
\begin{aligned}
A= & F(V) \wedge T\left(V, V^{\prime}\right) \\
& B=\neg P\left(V^{\prime}\right)
\end{aligned}
$$

- Approximated forward reachability

Backward Reachability Analysis

init

Duality In a SAT Query

- $\operatorname{INIT}(\mathrm{V}) \wedge T\left(\mathrm{~V}^{\prime}, \mathrm{V}^{\prime}\right) \wedge-P\left(\mathrm{~V}^{\prime}\right)$

- We tend to read it "Forward"
- From left to right

Duality In a SAT Query

- $\operatorname{INIT}(\mathrm{V}) \wedge T\left(\mathrm{~V}^{\prime}, \mathrm{V}^{\prime}\right) \wedge-P\left(\mathrm{~V}^{\prime}\right)$

Do we reach the initial states?

- We tend to read it "Forward"
- From left to right
- We can also read it "Backward"
- From right to left
- Does the pre-image of the bad states intersect the initial states

Approximated Backward Reachability

- $B(V)$ - a set of states
- For the unsatisfiable formula $\operatorname{INIT}(V) \wedge T\left(V, V^{\prime}\right) \wedge B\left(V^{\prime}\right)$, define:

$$
\begin{gathered}
A=T\left(V, V^{\prime}\right) \wedge B\left(V^{\prime}\right) \\
B=\operatorname{INIT}(V)
\end{gathered}
$$

- Approximated backward reachability

Dual Approximated Reachability (DAR)

- Compute two sequences of reachable states
- Forward Sequence: $\left\langle F_{0}, F_{1}, \ldots, F_{n}\right\rangle$
- Backward Sequence: < $\left.B_{0}, B_{1}, \ldots, B_{n}\right\rangle$
- Sequences are over-approximations
- For the forward sequence:
- $F_{i}(V) \wedge T\left(V, V^{\prime}\right) \Rightarrow F_{i+1}\left(V^{\prime}\right)$
- $F_{i} \Rightarrow P$
- For the backward sequence
- $B_{i+1}(V) \Leftarrow T\left(V, V^{\prime}\right) \wedge B_{i}\left(V^{\prime}\right)$
- $\mathrm{B}_{\mathrm{i}} \Rightarrow$ INIT

Dual Approximated Reachability (DAR)

- Two main phases during the computation
- Local Strengthening
- No unrolling
- Global Strengthening
- Limited unrolling
- In case the Local Strengthening fails

Dual Approximated Reachability

Local Strengthening

What if F_{1} and B_{1} intersect each other?
There might be a counterexample

Local Strengthening

What if F_{1} and B_{1} intersect each other?
$F_{1}(V) \wedge T\left(V, V^{\prime}\right) \wedge B_{0}\left(V^{\prime}\right)$
$F_{0}(V) \wedge T\left(V, V^{\prime}\right) \wedge B_{1}\left(V^{\prime}\right)$
$F_{0}=$ INIT

Local Strengthening

- Compute forward and backward interpolants
- F_{2} is the forward interpolant
- Backward interpolant strengthens the already existing B_{1}

Local Strengthening $\overbrace{\text { INIT }(V)}^{B} \overbrace{\wedge^{\top}}^{A} \overbrace{T\left(V, V^{\prime}\right)}^{A} \overbrace{B_{B_{1}\left(V^{\prime}\right)}^{B}}^{B}$ Must be UnSAT

- Compute forward and backward interpolants
$-B_{2}$ is the backward interpolant
$-F_{1}^{\prime}$ is strengthening the already existing F_{1}

Local Strengthening Fails

$$
F_{a}(V) \wedge T\left(V, V^{\prime}\right) \wedge B_{a}^{(}\left(V^{\prime}\right)
$$

Global Strengthening

- Apply unrolling gradually
- Start from the initial states
- Try to reach the backward sequence using an increasing number of T's

Global Strengthening

Global Strengthening

Interpolation sequence for UNSAT formula

Global Strengthening

$F_{0}(V) \wedge T\left(V^{\prime}, V^{\prime}\right) \wedge T\left(V^{\prime}, V^{\prime \prime}\right) \wedge T\left(V^{\prime \prime}, V^{\prime \prime}\right) \wedge B_{1}\left(V^{\prime \prime \prime}\right)$

- Formula is unsatisfiable
- Extract an interpolation-sequence: I_{1}, I_{2}, I_{3}
- I_{j} over-approximates states reachable in j steps
- Use I_{j} to strengthen F_{j}
- Example: $F_{3}{ }^{\prime}=F_{3} \wedge I_{3}$
$-F_{3}{ }^{\prime} \wedge B_{1}$ is unsatisfiable
- Re-Apply Local Strengthening
$-F_{3}(V) \wedge T\left(V, V^{\prime}\right) \wedge-P\left(V^{\prime}\right)$ is unsatisfiable

Global Strengthening

- If a CEX exists - Full unrolling
- Otherwise, gradually unroll the model
- Try to reach the Backward sequence
- When the backward sequence is not reachable
- Extract interpolation sequence
- Strengthen forward sequence
- Reapply Local Strengthening

Checking if a "fixpoint" has been reached

- $\mathrm{F}_{\mathrm{k}} \Rightarrow \mathrm{V}_{\mathrm{j}=1, n-1} \mathrm{~F}_{\mathrm{j}}$
- But we also have the backward sequence

$$
B_{k} \Rightarrow V_{j=1, n-1} B_{j}
$$

- Same principle applies here check inclusion for every $2 \leq k \leq n$

(Local) Summary

- Use both Forward and Backward traversals in a tight manner
- Mostly local - No unrolling
- Inspired by IC3/PDR
- When unrolling is used, it is restricted
- Experiments confirm

(Global) Summary

We presented several methods for SATbased (unbounded) model checking

- Over-approximate the (forward) reachability analysis
- Apply different methods for making the over-approximation more precise
- Reduce number of spurious counterexamples
- (Hopefully) help termination (fixpont)

Thank You

