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In Computer Science, ontologies O = (T, Sig) consist of a

a finite axiomatization T of a logical theory over a signature Sig.

Sig is the vocabulary used to describe a domain of interest and T specifies the
meaning of the symbols in Sig.

• Ontologies are typically given in description logics (DLs) which underpin
the W3C standard OWL.

• DLs: well-behaved fragments of first-order logic with convenient syntax.

• Data are not part of the ontology.
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Ontologies are often large!

Examples of ontologies in the life sciences and healthcare.

• SNOMED CT: medical and healthcare ontology used in many countries;
300, 000 terms.

• NCI: National Cancer Institute Thesaurus; 60, 000 terms;

• GO: Gene ontology; more than 50, 000 terms;

• GALEN: medical ontology; lot’s of different versions.
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Example

Cystic Fibrosis ≡ Fibrosis u ∃located In.Pancreas u ∃has Origin.Genetic Origin

Genetic Fibrosis ≡ Fibrosis u ∃has Origin.Genetic Origin

Genetic Fibrosis w Fibrosis u ∃located In.Pancreas

Genetic Fibrosis v Genetic Disorder

DEFBI Gene v Immuno Protein Gene u ∃associated With.Cystic Fibrosis

Translation of first axiom into FO:

∀x.(Cystic Fibrosis(x)↔ C(x))

where

C(x) = Fibrosis(x)u∃y.(located In(x, y)∧Pancreas(y))∧∃y.(has Origin(x, y)∧Genetic Origin(y))
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Description Logics: EL and ALC

EL-concepts are constructed from concept names (unary predicates)A1, A2, . . .

and binary relations r1, . . .

C := > | Ai | C u C | ∃ri.C.

ALC-concepts:

C := Ai | C u C | ¬C | ∃ri.C | ∀ri.C.

In a model I = (∆I, AI
1 , . . . , r

I
1 , . . .) the interpretation CI ⊆ ∆ of a concept

CI is defined inductively:

(C1 u C2)
I = CI

1 ∩ C
I
2

(∃r.C)I = {w ∈ ∆ | ∃v (w, v) ∈ rI ∧ v ∈ CI}

(∀r.C)I = {w ∈ ∆ | ∀v (w, v) ∈ rI ⇒ v ∈ CI}
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Ontologies in Description Logic

A sentence is an implication C1 v C2 between concepts.

I |= C1 v C2 iff CI
1 ⊆ CI

2 .

An ontology O is a finite set of sentences C1 v C2. We use C1 ≡ C2 as an
abbreviation for C1 v C2 and C2 v C1.

Deciding whether O |= C v D is

• ExpTime-complete for ALC;

• PTime-complete for EL.
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Explicit Definitions in Description Logic

Provide definitions of new terms using already defined terms.

Cystic Fibrosis ≡ Fibrosis u ∃located In.Pancreas u ∃has Origin.Genetic Origin

Problem: Given an arbitrary ontologyO, a signature Σ, and a conceptC, does
the ontology provide an explicit definition of the C using symbols from Σ only?

Possible aim: rewrite a given ontology into one that (mainly) consists of defini-
tions of the form

A ≡ C
where A is a concept name. If no cyclic definitions occur, such ontologies are
called acyclic TBoxes.
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Concrete Application: Ontologies for Querying data

Assume a database schema is given by the signature

Σ = {diagnosis, heartdisease}

and a user wants to query heartpatient(x) which is not in the schema.

Assume the following ontology is given

O = {heartpatient ≡ ∃diagnosis.Heartdisease}

Then one can equivalently rewrite the query heartpatient(x) into the query

∃diagnosis.Heartdisease

which is in the database schema and can be evaluated.

Problem: Given an ontology O, a schema Σ, and a query q, can q be equiva-
lently rewritten into a Σ-query?



Explicit Definitions

Let C be a concept,O an ontology, and Σ a signature. C is explicitly definable
using Σ in O iff there exists a concept D over Σ such that

O |= C ≡ D.



Explicit Definitions

Let C be a concept,O an ontology, and Σ a signature. C is explicitly definable
using Σ in O iff there exists a concept D over Σ such that

O |= C ≡ D.

Parent ≡ ∃hasChild.>

Parent ≡ Father tMother

Father v Man

Mother v Woman

Man v ¬Woman

Then Mother and Father are explicitly definable from Σ = {hasChild,Woman} in
O by

Mother ≡ Woman u ∃hasChild.>, Father ≡ Man u ∃hasChild.>
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How to test existence and compute explicit definitions?

C is implicitly definable from Σ in O iff for any two models I and J with the
same domain and the same interpretation of Σ-symbols,

CI = CJ .

A Logic has the Beth Definability Property (projective) if every C that is implicitly
definable, is is explicitly definable as well.

C is implicitly definable using Σ in O iff

O ∪O′ |= C ≡ C′

where ′ is the result of replacing non-Σ-symbols by fresh symbols.



Interpolants as explicit definitions

Assume O ∪O′ |= C v C′. Then there exists an interpolant I with

• sig(I) ⊆ sig(C,O) ∩ sig(C′,O′).

• O ∪O′ |= C v I.

• O ∪O′ |= I v C′.

Tableau-based algorithms for computing I for various DLs (including ALC) de-
veloped in recent JAIR paper.
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Issues: Size and Existence

In ALC minimal interpolants can be of double exponential size.

The OWL standard (and many ontologies) contains inclusions R v S between
binary predicates.

Let S,R1, R2 be binary relations. and consider ontology O.

S v R1

S v R2

∃R1.A u ∀S.⊥ v ∀R2.¬A

∃R1.¬A u ∀S.⊥ v ∀R2.A

∃S.> is explicitly defined using {R1, R2} by

∃S.> ≡ ∃(R1 ∩R2).>.

This is, however, not in the OWL standard.
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Decompositions of Ontologies

Assume O is an ontology and ∆ ⊆ sig(O) a signature.

A partition Σ1, . . . ,Σn of sig(O) \ ∆ is a ∆-decomposition of O if there are
O1, . . . ,On such that

• sig(Oi) ⊆ Σi ∪∆;

• O1 ∪ · · · ∪ On ≡ O.

Problems:

• Is there a unique finest ∆-decomposition?

• Do decompositions in a given DL coincide with decompositions in SO?

• Compute (unique finest) decomposition.
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Parallel Interpolation (without ∆)

Assume O1,O2 and α with O1 ∪ O2 |= α are given.

A pair
O′

1,O
′
2

is a parallel interpolant of O1,O2 and α if

• O′
1 ∪ O′

2 |= α;

• Oi |= O′
i;

• sig(O′
i) ⊆ sig(Oi) ∩ sig(α);

Parallel interpolation: parallel interpolant exists ifO1∪O1 |= α, sig(O1)∩sig(O2) =

∅, and O1,O2 have the same consequences over empty signature.



Parallel Interpolation

Non-trivial to prove because not closed under Boolean operators: ALC and
EL have parallel interpolation.



Parallel Interpolation

Non-trivial to prove because not closed under Boolean operators: ALC and
EL have parallel interpolation.

Parallel interpolation implies:

• There is a unique finest ∆-decomposition.

• Decompositions in DL coincide with decompositions in SO.

• Interpolants are axiomatizations of components.
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Uniform interpolation

Standard interpolation: if O |= α, then there exists O′ with

• sig(O′) ⊆ sig(O) ∩ sig(α);

• O |= O′;

• O′ |= α.

A uniform interpolant is an interpolant for all α with sig(α) ∩ sig(O) ⊆ Σ for a
fixed Σ.

I understand that Craig really wanted uniform interpolants.

Definition: A uniform Σ-interpolant O′ of O has the following properties:

• O |= O′;

• sig(O′) ⊆ Σ;

• if O |= α and sig(α) ∩ sig(O) ⊆ Σ, then O′ |= α.
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In FO (and DLs) uniform interpolants do not always exist

Let
O = {A v B,B v ∃r.B}

and Σ = {A, r}.

Infinite “uniform Σ-interpolant” given by

O′ = {A v infinite r-chain}

This cannot be axiomatized in FO or standard DLs.

ALCµ (modal µ-calculus) is an extension of ALC with uniform interpolation.
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Why uniform interpolants of ontologies?

• Re-use: from an ontology of size 300 000 one typically needs only a small
fraction of its terms for an application. Work with the corresponding uni-
form Σ-interpolant.

• Ontology summary: a uniform interpolant summarises what an ontology
says about Σ.

• Predicate-Hiding: if one does not want to publish what the ontologies says
about non-Σ-symbols.
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Uniform interpolants for acyclic EL-TBoxes

For acyclic EL-TBoxes, uniform interpolants always exist.

In the worst case, exponentially many axioms of exponential size required.

Proof that exponentially many axioms are required: Let

O = {A ≡ B1 u · · · uBn} ∪ {Aij v Bi | 1 ≤ i, j ≤ n}.

and
Σ = {A} ∪ {Aij | 1 ≤ i, j ≤ n}.

Then
O′ = {A1j1 u · · · uAnjn v A | 1 ≤ j1, . . . , jn ≤ n}

is a smallest uniform Σ-interpolant.
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Exponential size axioms in uniform interpolants

Let
O = {Ai v ∃r.Ai+1 u ∃s.Ai+1 | i ≤ n}

and Σ = {A0, r, s}.

Then
O′ = {A0 v binary tree of depth n}

is smallest uniform Σ-interpolant.



Computing uniform interpolants for SNOMED CT and NCI

100 randomly generated signatures.

|Σ| SNOMED CT |Σ| NCI

2 000 100.0% 5 000 97.0%

3 000 92.2% 10 000 81.1%

4 000 67.0% 15 000 72.0%

5 000 60.0% 20 000 59.2%



Comparing the size of Σ-modules and Σ-interpolants for SNOMED
CT

• Signatures containing 3 000 concept names and 20 role names



Σ-module

Let O be an ontology and Σ a signature.

A Σ-moduleM⊆ O has the following property:

M |= α ⇔ O |= α

for all α over Σ.



Comparing the size of Σ-modules and Σ-interpolants for NCI

• Σ contains 7 000 concept names and 20 role names
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Complexity and Size of Uniform Interpolants

In EL the existence of uniform interpolation for a given O and Σ is ExpTime
complete.

Uniform interpolants can be of triple exponential size in the worst case.

In ALC the existence of uniform interpolation for a given O and Σ is 2ExpTime
complete.

Uniform interpolants can be of triple exponential size in the worst case.

Work on computing uniform interpolants at this workshop, IJCAR 2014, and KR
2014.
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Where do the α come from?

Let
O = {A v ∃r.B u ∃r.¬B}

and Σ = {A, r}.

Then
O′ = {A v ∃r.>}

is a uniform Σ-interpolant of O for ALC concept inclusions.

This is not a uniform Σ interpolant for FO (or certain DLs).
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EL uniform interpolants are not always ALC uniform interpolants

O = {A v ∃r.B,A0 v ∃r.(A1 uB), E ≡ A1 uB u ∃r.(A2 uB)}

is an acyclic EL-TBox. So uniform interpolants for EL consequences always
exist.

However, for Σ = {A, r,A0, A1, E}, there is no uniform Σ-interpolant for ALC
consequences.
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Other α

Important for ontology-based data access, where one uses queries q (e.g.,
conjunctive queries) to query data sets D taking into account ontology O:

O ∪D |= q

Investigate existence and computation of O′ such that

• O |= O′;

• sig(O′) ⊆ Σ;

• if O ∪D |= q and sig(D, q) ∩ sig(O) ⊆ Σ, then O′ ∪ D |= q.

For EL very similar to concept inclusions; for ALC no results yet.



Conclusion

• Many potential applications of interpolation in Description Logic.

• Many theoretical results: existence of interpolants, size of interpolants,
complexity of computing interpolants.

• Implemented algorithms and evaluation needed.
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