
Interpolation in Description Logic:
A Survey

Frank Wolter

University of Liverpool

Plan

• Introduction to Ontologies/Description Logic

• Interpolation for Rewritings/Beth Definability

• Parallel Interpolation for Decomposition

• Uniform Interpolation

Ontologies

In Computer Science, ontologies O = (T, Sig) consist of a

a finite axiomatization T of a logical theory over a signature Sig.

Sig is the vocabulary used to describe a domain of interest and T specifies the
meaning of the symbols in Sig.

Ontologies

In Computer Science, ontologies O = (T, Sig) consist of a

a finite axiomatization T of a logical theory over a signature Sig.

Sig is the vocabulary used to describe a domain of interest and T specifies the
meaning of the symbols in Sig.

• Ontologies are typically given in description logics (DLs) which underpin
the W3C standard OWL.

Ontologies

In Computer Science, ontologies O = (T, Sig) consist of a

a finite axiomatization T of a logical theory over a signature Sig.

Sig is the vocabulary used to describe a domain of interest and T specifies the
meaning of the symbols in Sig.

• Ontologies are typically given in description logics (DLs) which underpin
the W3C standard OWL.

• DLs: well-behaved fragments of first-order logic with convenient syntax.

Ontologies

In Computer Science, ontologies O = (T, Sig) consist of a

a finite axiomatization T of a logical theory over a signature Sig.

Sig is the vocabulary used to describe a domain of interest and T specifies the
meaning of the symbols in Sig.

• Ontologies are typically given in description logics (DLs) which underpin
the W3C standard OWL.

• DLs: well-behaved fragments of first-order logic with convenient syntax.

• Data are not part of the ontology.

Ontologies are often large!

Examples of ontologies in the life sciences and healthcare.

Ontologies are often large!

Examples of ontologies in the life sciences and healthcare.

• SNOMED CT: medical and healthcare ontology used in many countries;
300, 000 terms.

Ontologies are often large!

Examples of ontologies in the life sciences and healthcare.

• SNOMED CT: medical and healthcare ontology used in many countries;
300, 000 terms.

• NCI: National Cancer Institute Thesaurus; 60, 000 terms;

Ontologies are often large!

Examples of ontologies in the life sciences and healthcare.

• SNOMED CT: medical and healthcare ontology used in many countries;
300, 000 terms.

• NCI: National Cancer Institute Thesaurus; 60, 000 terms;

• GO: Gene ontology; more than 50, 000 terms;

Ontologies are often large!

Examples of ontologies in the life sciences and healthcare.

• SNOMED CT: medical and healthcare ontology used in many countries;
300, 000 terms.

• NCI: National Cancer Institute Thesaurus; 60, 000 terms;

• GO: Gene ontology; more than 50, 000 terms;

• GALEN: medical ontology; lot’s of different versions.

Example

Cystic Fibrosis ≡ Fibrosis u ∃located In.Pancreas u ∃has Origin.Genetic Origin

Genetic Fibrosis ≡ Fibrosis u ∃has Origin.Genetic Origin

Genetic Fibrosis w Fibrosis u ∃located In.Pancreas

Genetic Fibrosis v Genetic Disorder

DEFBI Gene v Immuno Protein Gene u ∃associated With.Cystic Fibrosis

Example

Cystic Fibrosis ≡ Fibrosis u ∃located In.Pancreas u ∃has Origin.Genetic Origin

Genetic Fibrosis ≡ Fibrosis u ∃has Origin.Genetic Origin

Genetic Fibrosis w Fibrosis u ∃located In.Pancreas

Genetic Fibrosis v Genetic Disorder

DEFBI Gene v Immuno Protein Gene u ∃associated With.Cystic Fibrosis

Translation of first axiom into FO:

∀x.(Cystic Fibrosis(x)↔ C(x))

where

C(x) = Fibrosis(x)u∃y.(located In(x, y)∧Pancreas(y))∧∃y.(has Origin(x, y)∧Genetic Origin(y))

Description Logics: EL and ALC

EL-concepts are constructed from concept names (unary predicates)A1, A2, . . .

and binary relations r1, . . .

C := > | Ai | C u C | ∃ri.C.

Description Logics: EL and ALC

EL-concepts are constructed from concept names (unary predicates)A1, A2, . . .

and binary relations r1, . . .

C := > | Ai | C u C | ∃ri.C.

ALC-concepts:

C := Ai | C u C | ¬C | ∃ri.C | ∀ri.C.

Description Logics: EL and ALC

EL-concepts are constructed from concept names (unary predicates)A1, A2, . . .

and binary relations r1, . . .

C := > | Ai | C u C | ∃ri.C.

ALC-concepts:

C := Ai | C u C | ¬C | ∃ri.C | ∀ri.C.

In a model I = (∆I, AI
1 , . . . , r

I
1 , . . .) the interpretation CI ⊆ ∆ of a concept

CI is defined inductively:

(C1 u C2)
I = CI

1 ∩ C
I
2

(∃r.C)I = {w ∈ ∆ | ∃v (w, v) ∈ rI ∧ v ∈ CI}

(∀r.C)I = {w ∈ ∆ | ∀v (w, v) ∈ rI ⇒ v ∈ CI}

Ontologies in Description Logic

A sentence is an implication C1 v C2 between concepts.

Ontologies in Description Logic

A sentence is an implication C1 v C2 between concepts.

I |= C1 v C2 iff CI
1 ⊆ CI

2 .

Ontologies in Description Logic

A sentence is an implication C1 v C2 between concepts.

I |= C1 v C2 iff CI
1 ⊆ CI

2 .

An ontology O is a finite set of sentences C1 v C2. We use C1 ≡ C2 as an
abbreviation for C1 v C2 and C2 v C1.

Ontologies in Description Logic

A sentence is an implication C1 v C2 between concepts.

I |= C1 v C2 iff CI
1 ⊆ CI

2 .

An ontology O is a finite set of sentences C1 v C2. We use C1 ≡ C2 as an
abbreviation for C1 v C2 and C2 v C1.

Deciding whether O |= C v D is

• ExpTime-complete for ALC;

• PTime-complete for EL.

Explicit Definitions in Description Logic

Provide definitions of new terms using already defined terms.

Cystic Fibrosis ≡ Fibrosis u ∃located In.Pancreas u ∃has Origin.Genetic Origin

Explicit Definitions in Description Logic

Provide definitions of new terms using already defined terms.

Cystic Fibrosis ≡ Fibrosis u ∃located In.Pancreas u ∃has Origin.Genetic Origin

Problem: Given an arbitrary ontologyO, a signature Σ, and a conceptC, does
the ontology provide an explicit definition of the C using symbols from Σ only?

Explicit Definitions in Description Logic

Provide definitions of new terms using already defined terms.

Cystic Fibrosis ≡ Fibrosis u ∃located In.Pancreas u ∃has Origin.Genetic Origin

Problem: Given an arbitrary ontologyO, a signature Σ, and a conceptC, does
the ontology provide an explicit definition of the C using symbols from Σ only?

Possible aim: rewrite a given ontology into one that (mainly) consists of defini-
tions of the form

A ≡ C
where A is a concept name. If no cyclic definitions occur, such ontologies are
called acyclic TBoxes.

Concrete Application: Ontologies for Querying data

Assume a database schema is given by the signature

Σ = {diagnosis, heartdisease}

and a user wants to query heartpatient(x) which is not in the schema.

Concrete Application: Ontologies for Querying data

Assume a database schema is given by the signature

Σ = {diagnosis, heartdisease}

and a user wants to query heartpatient(x) which is not in the schema.

Assume the following ontology is given

O = {heartpatient ≡ ∃diagnosis.Heartdisease}

Then one can equivalently rewrite the query heartpatient(x) into the query

∃diagnosis.Heartdisease

which is in the database schema and can be evaluated.

Concrete Application: Ontologies for Querying data

Assume a database schema is given by the signature

Σ = {diagnosis, heartdisease}

and a user wants to query heartpatient(x) which is not in the schema.

Assume the following ontology is given

O = {heartpatient ≡ ∃diagnosis.Heartdisease}

Then one can equivalently rewrite the query heartpatient(x) into the query

∃diagnosis.Heartdisease

which is in the database schema and can be evaluated.

Problem: Given an ontology O, a schema Σ, and a query q, can q be equiva-
lently rewritten into a Σ-query?

Explicit Definitions

Let C be a concept,O an ontology, and Σ a signature. C is explicitly definable
using Σ in O iff there exists a concept D over Σ such that

O |= C ≡ D.

Explicit Definitions

Let C be a concept,O an ontology, and Σ a signature. C is explicitly definable
using Σ in O iff there exists a concept D over Σ such that

O |= C ≡ D.

Parent ≡ ∃hasChild.>

Parent ≡ Father tMother

Father v Man

Mother v Woman

Man v ¬Woman

Then Mother and Father are explicitly definable from Σ = {hasChild,Woman} in
O by

Mother ≡ Woman u ∃hasChild.>, Father ≡ Man u ∃hasChild.>

How to test existence and compute explicit definitions?

How to test existence and compute explicit definitions?

C is implicitly definable from Σ in O iff for any two models I and J with the
same domain and the same interpretation of Σ-symbols,

CI = CJ .

How to test existence and compute explicit definitions?

C is implicitly definable from Σ in O iff for any two models I and J with the
same domain and the same interpretation of Σ-symbols,

CI = CJ .

A Logic has the Beth Definability Property (projective) if every C that is implicitly
definable, is is explicitly definable as well.

How to test existence and compute explicit definitions?

C is implicitly definable from Σ in O iff for any two models I and J with the
same domain and the same interpretation of Σ-symbols,

CI = CJ .

A Logic has the Beth Definability Property (projective) if every C that is implicitly
definable, is is explicitly definable as well.

C is implicitly definable using Σ in O iff

O ∪O′ |= C ≡ C′

where ′ is the result of replacing non-Σ-symbols by fresh symbols.

Interpolants as explicit definitions

Assume O ∪O′ |= C v C′. Then there exists an interpolant I with

• sig(I) ⊆ sig(C,O) ∩ sig(C′,O′).

• O ∪O′ |= C v I.

• O ∪O′ |= I v C′.

Tableau-based algorithms for computing I for various DLs (including ALC) de-
veloped in recent JAIR paper.

Issues: Size and Existence

In ALC minimal interpolants can be of double exponential size.

Issues: Size and Existence

In ALC minimal interpolants can be of double exponential size.

The OWL standard (and many ontologies) contains inclusions R v S between
binary predicates.

Issues: Size and Existence

In ALC minimal interpolants can be of double exponential size.

The OWL standard (and many ontologies) contains inclusions R v S between
binary predicates.

Let S,R1, R2 be binary relations. and consider ontology O.

S v R1

S v R2

∃R1.A u ∀S.⊥ v ∀R2.¬A

∃R1.¬A u ∀S.⊥ v ∀R2.A

Issues: Size and Existence

In ALC minimal interpolants can be of double exponential size.

The OWL standard (and many ontologies) contains inclusions R v S between
binary predicates.

Let S,R1, R2 be binary relations. and consider ontology O.

S v R1

S v R2

∃R1.A u ∀S.⊥ v ∀R2.¬A

∃R1.¬A u ∀S.⊥ v ∀R2.A

∃S.> is explicitly defined using {R1, R2} by

∃S.> ≡ ∃(R1 ∩R2).>.

This is, however, not in the OWL standard.

Decompositions of Ontologies

Assume O is an ontology.

A partition Σ1, . . . ,Σn of sig(O) is a decomposition ofO if there areO1, . . . ,On

such that

• sig(Oi) ⊆ Σi;

• O1 ∪ · · · ∪ On ≡ O.

Decompositions of Ontologies

Assume O is an ontology and ∆ ⊆ sig(O) a signature.

A partition Σ1, . . . ,Σn of sig(O) \ ∆ is a ∆-decomposition of O if there are
O1, . . . ,On such that

• sig(Oi) ⊆ Σi ∪∆;

• O1 ∪ · · · ∪ On ≡ O.

Decompositions of Ontologies

Assume O is an ontology and ∆ ⊆ sig(O) a signature.

A partition Σ1, . . . ,Σn of sig(O) \ ∆ is a ∆-decomposition of O if there are
O1, . . . ,On such that

• sig(Oi) ⊆ Σi ∪∆;

• O1 ∪ · · · ∪ On ≡ O.

Problems:

• Is there a unique finest ∆-decomposition?

Decompositions of Ontologies

Assume O is an ontology and ∆ ⊆ sig(O) a signature.

A partition Σ1, . . . ,Σn of sig(O) \ ∆ is a ∆-decomposition of O if there are
O1, . . . ,On such that

• sig(Oi) ⊆ Σi ∪∆;

• O1 ∪ · · · ∪ On ≡ O.

Problems:

• Is there a unique finest ∆-decomposition?

• Do decompositions in a given DL coincide with decompositions in SO?

Decompositions of Ontologies

Assume O is an ontology and ∆ ⊆ sig(O) a signature.

A partition Σ1, . . . ,Σn of sig(O) \ ∆ is a ∆-decomposition of O if there are
O1, . . . ,On such that

• sig(Oi) ⊆ Σi ∪∆;

• O1 ∪ · · · ∪ On ≡ O.

Problems:

• Is there a unique finest ∆-decomposition?

• Do decompositions in a given DL coincide with decompositions in SO?

• Compute (unique finest) decomposition.

Parallel Interpolation (without ∆)

Assume O1,O2 and α with O1 ∪ O2 |= α are given.

Parallel Interpolation (without ∆)

Assume O1,O2 and α with O1 ∪ O2 |= α are given.

A pair
O′

1,O
′
2

is a parallel interpolant of O1,O2 and α if

• O′
1 ∪ O′

2 |= α;

• Oi |= O′
i;

• sig(O′
i) ⊆ sig(Oi) ∩ sig(α);

Parallel Interpolation (without ∆)

Assume O1,O2 and α with O1 ∪ O2 |= α are given.

A pair
O′

1,O
′
2

is a parallel interpolant of O1,O2 and α if

• O′
1 ∪ O′

2 |= α;

• Oi |= O′
i;

• sig(O′
i) ⊆ sig(Oi) ∩ sig(α);

Parallel interpolation: parallel interpolant exists ifO1∪O1 |= α, sig(O1)∩sig(O2) =

∅, and O1,O2 have the same consequences over empty signature.

Parallel Interpolation

Non-trivial to prove because not closed under Boolean operators: ALC and
EL have parallel interpolation.

Parallel Interpolation

Non-trivial to prove because not closed under Boolean operators: ALC and
EL have parallel interpolation.

Parallel interpolation implies:

• There is a unique finest ∆-decomposition.

• Decompositions in DL coincide with decompositions in SO.

• Interpolants are axiomatizations of components.

Uniform interpolation

Standard interpolation: if O |= α, then there exists O′ with

• sig(O′) ⊆ sig(O) ∩ sig(α);

• O |= O′;

• O′ |= α.

Uniform interpolation

Standard interpolation: if O |= α, then there exists O′ with

• sig(O′) ⊆ sig(O) ∩ sig(α);

• O |= O′;

• O′ |= α.

A uniform interpolant is an interpolant for all α with sig(α) ∩ sig(O) ⊆ Σ for a
fixed Σ.

I understand that Craig really wanted uniform interpolants.

Uniform interpolation

Standard interpolation: if O |= α, then there exists O′ with

• sig(O′) ⊆ sig(O) ∩ sig(α);

• O |= O′;

• O′ |= α.

A uniform interpolant is an interpolant for all α with sig(α) ∩ sig(O) ⊆ Σ for a
fixed Σ.

I understand that Craig really wanted uniform interpolants.

Definition: A uniform Σ-interpolant O′ of O has the following properties:

• O |= O′;

• sig(O′) ⊆ Σ;

• if O |= α and sig(α) ∩ sig(O) ⊆ Σ, then O′ |= α.

In FO (and DLs) uniform interpolants do not always exist

Let
O = {A v B,B v ∃r.B}

and Σ = {A, r}.

In FO (and DLs) uniform interpolants do not always exist

Let
O = {A v B,B v ∃r.B}

and Σ = {A, r}.

Infinite “uniform Σ-interpolant” given by

O′ = {A v infinite r-chain}

This cannot be axiomatized in FO or standard DLs.

In FO (and DLs) uniform interpolants do not always exist

Let
O = {A v B,B v ∃r.B}

and Σ = {A, r}.

Infinite “uniform Σ-interpolant” given by

O′ = {A v infinite r-chain}

This cannot be axiomatized in FO or standard DLs.

ALCµ (modal µ-calculus) is an extension of ALC with uniform interpolation.

Why uniform interpolants of ontologies?

• Re-use: from an ontology of size 300 000 one typically needs only a small
fraction of its terms for an application. Work with the corresponding uni-
form Σ-interpolant.

Why uniform interpolants of ontologies?

• Re-use: from an ontology of size 300 000 one typically needs only a small
fraction of its terms for an application. Work with the corresponding uni-
form Σ-interpolant.

• Ontology summary: a uniform interpolant summarises what an ontology
says about Σ.

Why uniform interpolants of ontologies?

• Re-use: from an ontology of size 300 000 one typically needs only a small
fraction of its terms for an application. Work with the corresponding uni-
form Σ-interpolant.

• Ontology summary: a uniform interpolant summarises what an ontology
says about Σ.

• Predicate-Hiding: if one does not want to publish what the ontologies says
about non-Σ-symbols.

Uniform interpolants for acyclic EL-TBoxes

For acyclic EL-TBoxes, uniform interpolants always exist.

Uniform interpolants for acyclic EL-TBoxes

For acyclic EL-TBoxes, uniform interpolants always exist.

In the worst case, exponentially many axioms of exponential size required.

Uniform interpolants for acyclic EL-TBoxes

For acyclic EL-TBoxes, uniform interpolants always exist.

In the worst case, exponentially many axioms of exponential size required.

Proof that exponentially many axioms are required: Let

O = {A ≡ B1 u · · · uBn} ∪ {Aij v Bi | 1 ≤ i, j ≤ n}.

and
Σ = {A} ∪ {Aij | 1 ≤ i, j ≤ n}.

Uniform interpolants for acyclic EL-TBoxes

For acyclic EL-TBoxes, uniform interpolants always exist.

In the worst case, exponentially many axioms of exponential size required.

Proof that exponentially many axioms are required: Let

O = {A ≡ B1 u · · · uBn} ∪ {Aij v Bi | 1 ≤ i, j ≤ n}.

and
Σ = {A} ∪ {Aij | 1 ≤ i, j ≤ n}.

Then
O′ = {A1j1 u · · · uAnjn v A | 1 ≤ j1, . . . , jn ≤ n}

is a smallest uniform Σ-interpolant.

Exponential size axioms in uniform interpolants

Let
O = {Ai v ∃r.Ai+1 u ∃s.Ai+1 | i ≤ n}

and Σ = {A0, r, s}.

Exponential size axioms in uniform interpolants

Let
O = {Ai v ∃r.Ai+1 u ∃s.Ai+1 | i ≤ n}

and Σ = {A0, r, s}.

Then
O′ = {A0 v binary tree of depth n}

is smallest uniform Σ-interpolant.

Computing uniform interpolants for SNOMED CT and NCI

100 randomly generated signatures.

|Σ| SNOMED CT |Σ| NCI

2 000 100.0% 5 000 97.0%

3 000 92.2% 10 000 81.1%

4 000 67.0% 15 000 72.0%

5 000 60.0% 20 000 59.2%

Comparing the size of Σ-modules and Σ-interpolants for SNOMED
CT

• Signatures containing 3 000 concept names and 20 role names

Σ-module

Let O be an ontology and Σ a signature.

A Σ-moduleM⊆ O has the following property:

M |= α ⇔ O |= α

for all α over Σ.

Comparing the size of Σ-modules and Σ-interpolants for NCI

• Σ contains 7 000 concept names and 20 role names

Complexity and Size of Uniform Interpolants

In EL the existence of uniform interpolation for a given O and Σ is ExpTime
complete.

Complexity and Size of Uniform Interpolants

In EL the existence of uniform interpolation for a given O and Σ is ExpTime
complete.

Uniform interpolants can be of triple exponential size in the worst case.

Complexity and Size of Uniform Interpolants

In EL the existence of uniform interpolation for a given O and Σ is ExpTime
complete.

Uniform interpolants can be of triple exponential size in the worst case.

In ALC the existence of uniform interpolation for a given O and Σ is 2ExpTime
complete.

Complexity and Size of Uniform Interpolants

In EL the existence of uniform interpolation for a given O and Σ is ExpTime
complete.

Uniform interpolants can be of triple exponential size in the worst case.

In ALC the existence of uniform interpolation for a given O and Σ is 2ExpTime
complete.

Uniform interpolants can be of triple exponential size in the worst case.

Complexity and Size of Uniform Interpolants

In EL the existence of uniform interpolation for a given O and Σ is ExpTime
complete.

Uniform interpolants can be of triple exponential size in the worst case.

In ALC the existence of uniform interpolation for a given O and Σ is 2ExpTime
complete.

Uniform interpolants can be of triple exponential size in the worst case.

Work on computing uniform interpolants at this workshop, IJCAR 2014, and KR
2014.

Where do the α come from?

Let
O = {A v ∃r.B u ∃r.¬B}

and Σ = {A, r}.

Where do the α come from?

Let
O = {A v ∃r.B u ∃r.¬B}

and Σ = {A, r}.

Then
O′ = {A v ∃r.>}

is a uniform Σ-interpolant of O for ALC concept inclusions.

Where do the α come from?

Let
O = {A v ∃r.B u ∃r.¬B}

and Σ = {A, r}.

Then
O′ = {A v ∃r.>}

is a uniform Σ-interpolant of O for ALC concept inclusions.

This is not a uniform Σ interpolant for FO (or certain DLs).

EL uniform interpolants are not always ALC uniform interpolants

O = {A v ∃r.B,A0 v ∃r.(A1 uB), E ≡ A1 uB u ∃r.(A2 uB)}

is an acyclic EL-TBox. So uniform interpolants for EL consequences always
exist.

EL uniform interpolants are not always ALC uniform interpolants

O = {A v ∃r.B,A0 v ∃r.(A1 uB), E ≡ A1 uB u ∃r.(A2 uB)}

is an acyclic EL-TBox. So uniform interpolants for EL consequences always
exist.

However, for Σ = {A, r,A0, A1, E}, there is no uniform Σ-interpolant for ALC
consequences.

Other α

Important for ontology-based data access, where one uses queries q (e.g.,
conjunctive queries) to query data sets D taking into account ontology O:

O ∪D |= q

Other α

Important for ontology-based data access, where one uses queries q (e.g.,
conjunctive queries) to query data sets D taking into account ontology O:

O ∪D |= q

Investigate existence and computation of O′ such that

• O |= O′;

• sig(O′) ⊆ Σ;

• if O ∪D |= q and sig(D, q) ∩ sig(O) ⊆ Σ, then O′ ∪ D |= q.

For EL very similar to concept inclusions; for ALC no results yet.

Conclusion

• Many potential applications of interpolation in Description Logic.

• Many theoretical results: existence of interpolants, size of interpolants,
complexity of computing interpolants.

• Implemented algorithms and evaluation needed.

Literature

Beth Definability and Interpolation:

• Balder ten Cate, Enrico Franconi, Inan Seylan: Beth Definability in Expres-
sive Description Logics. J. Artif. Intell. Res. (JAIR) 48: 347-414 (2013)

• Balder ten Cate, Willem Conradie, Maarten Marx, Yde Venema: Definito-
rially Complete Description Logics. KR 2006

Parallel Interpolation:

• Boris Konev, Carsten Lutz, Denis Ponomaryov, Frank Wolter: Decomposing
Description Logic Ontologies. KR 2010

Uniform Interpolation:

• Boris Konev, Dirk Walther, Frank Wolter: Forgetting and Uniform Interpola-
tion in Large-Scale Description Logic Terminologies. IJCAI 2009

• Carsten Lutz, Frank Wolter: Foundations for Uniform Interpolation and For-
getting in Expressive Description Logics. IJCAI 2011

• Carsten Lutz, Inan Seylan, Frank Wolter: An Automata-Theoretic Approach
to Uniform Interpolation and Approximation in the Description Logic EL. KR
2012

• Nadeschda Nikitina, Sebastian Rudolph: ExpExpExplosion: Uniform Inter-
polation in General EL Terminologies. ECAI 2012

• Patrick Koopmann, Renate A. Schmidt: Count and Forget: Uniform Inter-
polation of SHQ -Ontologies. IJCAR 2014

• M. Ludwig and B. Konev. Practical uniform interpolation and forgetting for
ALC TBoxes with applications to logical difference. In Principles of Knowl-
edge Representation and Reasoning. Proceedings, 2014.

• Kewen Wang, Zhe Wang, Rodney W. Topor, Jeff Z. Pan, Grigoris Antoniou:
Eliminating Concepts and Roles from Ontologies in Expressive Descriptive
Logics. Computational Intelligence 30(2): 205-232 (2014)

