Interpolation in Description Logic: A Survey

Frank Wolter

University of Liverpool

Plan

- Introduction to Ontologies/Description Logic
- Interpolation for Rewritings/Beth Definability
- Parallel Interpolation for Decomposition
- Uniform Interpolation

In Computer Science, ontologies $\mathcal{O} = (T, \mathsf{Sig})$ consist of a

a finite axiomatization T of a logical theory over a signature Sig.

Sig is the *vocabulary* used to describe a domain of interest and T specifies the *meaning* of the symbols in **Sig**.

In Computer Science, ontologies $\mathcal{O} = (T, \mathbf{Sig})$ consist of a

a finite axiomatization T of a logical theory over a signature Sig.

Sig is the *vocabulary* used to describe a domain of interest and T specifies the *meaning* of the symbols in **Sig**.

• Ontologies are typically given in description logics (DLs) which underpin the W3C standard OWL.

In Computer Science, ontologies $\mathcal{O} = (T, \mathbf{Sig})$ consist of a

a finite axiomatization T of a logical theory over a signature Sig.

Sig is the *vocabulary* used to describe a domain of interest and T specifies the *meaning* of the symbols in **Sig**.

- Ontologies are typically given in description logics (DLs) which underpin the W3C standard OWL.
- DLs: well-behaved fragments of first-order logic with convenient syntax.

In Computer Science, ontologies $\mathcal{O} = (T, \mathbf{Sig})$ consist of a

a finite axiomatization T of a logical theory over a signature Sig.

Sig is the *vocabulary* used to describe a domain of interest and T specifies the *meaning* of the symbols in **Sig**.

- Ontologies are typically given in description logics (DLs) which underpin the W3C standard OWL.
- DLs: well-behaved fragments of first-order logic with convenient syntax.
- Data are not part of the ontology.

Examples of ontologies in the life sciences and healthcare.

• SNOMED CT: medical and healthcare ontology used in many countries; 300,000 terms.

- SNOMED CT: medical and healthcare ontology used in many countries; 300,000 terms.
- NCI: National Cancer Institute Thesaurus; 60, 000 terms;

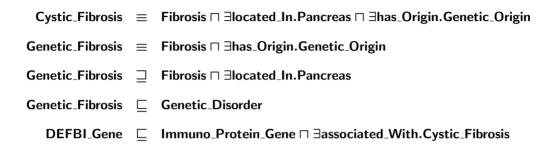
- SNOMED CT: medical and healthcare ontology used in many countries; 300,000 terms.
- NCI: National Cancer Institute Thesaurus; 60, 000 terms;
- GO: Gene ontology; more than 50, 000 terms;

- SNOMED CT: medical and healthcare ontology used in many countries; 300,000 terms.
- NCI: National Cancer Institute Thesaurus; 60, 000 terms;
- GO: Gene ontology; more than 50, 000 terms;
- GALEN: medical ontology; lot's of different versions.

Example

- $Cystic_Fibrosis \equiv Fibrosis \sqcap \exists located_In.Pancreas \sqcap \exists has_Origin.Genetic_Origin$
- Genetic_Fibrosis \equiv Fibrosis $\sqcap \exists has_Origin.Genetic_Origin$
- Genetic_Fibrosis \square Fibrosis $\sqcap \exists located_In.Pancreas$
- $Genetic_Fibrosis \subseteq Genetic_Disorder$
 - $DEFBI_Gene \ \ \Box \ Immuno_Protein_Gene \ \sqcap \exists associated_With.Cystic_Fibrosis$

Example



Translation of first axiom into FO:

 $\forall x.(\mathsf{Cystic}_{\mathsf{Fibrosis}}(x) \leftrightarrow C(x))$

where

 $C(x) = \mathsf{Fibrosis}(x) \sqcap \exists y. (\mathsf{located_In}(x, y) \land \mathsf{Pancreas}(y)) \land \exists y. (\mathsf{has_Origin}(x, y) \land \mathsf{Genetic_Origin}(y))$

Description Logics: \mathcal{EL} and \mathcal{ALC}

 \mathcal{EL} -concepts are constructed from concept names (unary predicates) A_1, A_2, \ldots and binary relations r_1, \ldots

 $C := \top \mid A_i \mid C \sqcap C \mid \exists r_i.C.$

Description Logics: \mathcal{EL} and \mathcal{ALC}

 \mathcal{EL} -concepts are constructed from concept names (unary predicates) A_1, A_2, \ldots and binary relations r_1, \ldots

 $C := \top \mid A_i \mid C \sqcap C \mid \exists r_i.C.$

ALC-concepts:

$$C := A_i \mid C \sqcap C \mid \neg C \mid \exists r_i.C \mid \forall r_i.C.$$

Description Logics: \mathcal{EL} and \mathcal{ALC}

 \mathcal{EL} -concepts are constructed from concept names (unary predicates) A_1, A_2, \ldots and binary relations r_1, \ldots

 $C := \top \mid A_i \mid C \sqcap C \mid \exists r_i.C.$

ALC-concepts:

$$C:= A_i \mid C \sqcap C \mid \neg C \mid \exists r_i.C \mid \forall r_i.C.$$

In a model $\mathcal{I} = (\Delta^{\mathcal{I}}, A_1^{\mathcal{I}}, \dots, r_1^{\mathcal{I}}, \dots)$ the interpretation $C^{\mathcal{I}} \subseteq \Delta$ of a concept $C^{\mathcal{I}}$ is defined inductively:

$$egin{aligned} (C_1 \sqcap C_2)^\mathcal{I} &=& C_1^\mathcal{I} \cap C_2^\mathcal{I} \ & (\exists r.C)^\mathcal{I} &=& \{w \in \Delta \mid \exists v \; (w,v) \in r^\mathcal{I} \land v \in C^\mathcal{I}\} \ & (orall r.C)^\mathcal{I} &=& \{w \in \Delta \mid orall v \; (w,v) \in r^\mathcal{I} \Rightarrow v \in C^\mathcal{I}\} \end{aligned}$$

A sentence is an implication $C_1 \sqsubseteq C_2$ between concepts.

A sentence is an implication $C_1 \sqsubseteq C_2$ between concepts.

 $\mathcal{I} \models C_1 \sqsubseteq C_2 \text{ iff } C_1^{\mathcal{I}} \subseteq C_2^{\mathcal{I}}.$

A sentence is an implication $C_1 \sqsubseteq C_2$ between concepts.

 $\mathcal{I} \models C_1 \sqsubseteq C_2 \text{ iff } C_1^{\mathcal{I}} \subseteq C_2^{\mathcal{I}}.$

An ontology \mathcal{O} is a finite set of sentences $C_1 \sqsubseteq C_2$. We use $C_1 \equiv C_2$ as an abbreviation for $C_1 \sqsubseteq C_2$ and $C_2 \sqsubseteq C_1$.

A sentence is an implication $C_1 \sqsubseteq C_2$ between concepts.

 $\mathcal{I} \models C_1 \sqsubseteq C_2 \text{ iff } C_1^{\mathcal{I}} \subseteq C_2^{\mathcal{I}}.$

An ontology \mathcal{O} is a finite set of sentences $C_1 \sqsubseteq C_2$. We use $C_1 \equiv C_2$ as an abbreviation for $C_1 \sqsubseteq C_2$ and $C_2 \sqsubseteq C_1$.

Deciding whether $\mathcal{O} \models C \sqsubseteq D$ is

- ExpTime-complete for *ALC*;
- PTime-complete for \mathcal{EL} .

Explicit Definitions in Description Logic

Provide definitions of new terms using already defined terms.

 $Cystic_Fibrosis \equiv Fibrosis \sqcap \exists located_In.Pancreas \sqcap \exists has_Origin.Genetic_Origin$

Explicit Definitions in Description Logic

Provide definitions of new terms using already defined terms.

 $Cystic_Fibrosis \equiv Fibrosis \sqcap \exists located_In.Pancreas \sqcap \exists has_Origin.Genetic_Origin$

Problem: Given an arbitrary ontology \mathcal{O} , a signature Σ , and a concept C, does the ontology provide an explicit definition of the C using symbols from Σ only?

Explicit Definitions in Description Logic

Provide definitions of new terms using already defined terms.

 $Cystic_Fibrosis \equiv Fibrosis \sqcap \exists located_In.Pancreas \sqcap \exists has_Origin.Genetic_Origin$

Problem: Given an arbitrary ontology \mathcal{O} , a signature Σ , and a concept C, does the ontology provide an explicit definition of the C using symbols from Σ only?

Possible aim: rewrite a given ontology into one that (mainly) consists of definitions of the form

$A\equiv C$

where A is a concept name. If no cyclic definitions occur, such ontologies are called acyclic TBoxes.

Concrete Application: Ontologies for Querying data

Assume a database schema is given by the signature

 $\Sigma = \{ \mathsf{diagnosis}, \mathsf{heartdisease} \}$

and a user wants to query heartpatient(x) which is not in the schema.

Concrete Application: Ontologies for Querying data

Assume a database schema is given by the signature

 $\Sigma = \{ \mathsf{diagnosis}, \mathsf{heartdisease} \}$

and a user wants to query heartpatient(x) which is not in the schema.

Assume the following ontology is given

 $\mathcal{O} = \{\text{heartpatient} \equiv \exists \text{diagnosis}.\text{Heartdisease} \}$

Then one can equivalently rewrite the query heartpatient(x) into the query

 $\exists diagnosis. Heart disease$

which is in the database schema and can be evaluated.

Concrete Application: Ontologies for Querying data

Assume a database schema is given by the signature

 $\Sigma = \{ \mathsf{diagnosis}, \mathsf{heartdisease} \}$

and a user wants to query heartpatient(x) which is not in the schema.

Assume the following ontology is given

 $\mathcal{O} = \{\text{heartpatient} \equiv \exists \text{diagnosis}. \text{Heartdisease}\}$

Then one can equivalently rewrite the query heartpatient(x) into the query

∃diagnosis.Heartdisease

which is in the database schema and can be evaluated.

Problem: Given an ontology \mathcal{O} , a schema Σ , and a query q, can q be equivalently rewritten into a Σ -query?

Explicit Definitions

Let C be a concept, \mathcal{O} an ontology, and Σ a signature. C is explicitly definable using Σ in \mathcal{O} iff there exists a concept D over Σ such that

 $\mathcal{O} \models C \equiv D.$

Explicit Definitions

Let C be a concept, \mathcal{O} an ontology, and Σ a signature. C is explicitly definable using Σ in \mathcal{O} iff there exists a concept D over Σ such that

$\mathcal{O} \models C \equiv D.$

- Parent $\equiv \exists hasChild. \top$
- Parent \equiv Father \sqcup Mother
- Father **_** Man
- Mother \sqsubseteq Woman
 - Man ⊑ ¬Woman

Then Mother and Father are explicitly definable from $\Sigma = \{$ hasChild, Woman $\}$ in \mathcal{O} by

Mother \equiv Woman $\sqcap \exists$ hasChild. \top , Father \equiv Man $\sqcap \exists$ hasChild. \top

C is implicitly definable from Σ in \mathcal{O} iff for any two models \mathcal{I} and \mathcal{J} with the same domain and the same interpretation of Σ -symbols,

 $C^{\mathcal{I}} = C^{\mathcal{J}}.$

C is implicitly definable from Σ in \mathcal{O} iff for any two models \mathcal{I} and \mathcal{J} with the same domain and the same interpretation of Σ -symbols,

$$C^{\mathcal{I}} = C^{\mathcal{J}}.$$

A Logic has the Beth Definability Property (projective) if every C that is implicitly definable, is is explicitly definable as well.

C is implicitly definable from Σ in \mathcal{O} iff for any two models \mathcal{I} and \mathcal{J} with the same domain and the same interpretation of Σ -symbols,

$$C^{\mathcal{I}} = C^{\mathcal{J}}.$$

A Logic has the Beth Definability Property (projective) if every C that is implicitly definable, is is explicitly definable as well.

C is implicitly definable using Σ in ${\cal O}$ iff

$$\mathcal{O}\cup\mathcal{O}'\models C\equiv C'$$

where ' is the result of replacing non- Σ -symbols by fresh symbols.

Interpolants as explicit definitions

Assume $\mathcal{O} \cup \mathcal{O}' \models C \sqsubseteq C'$. Then there exists an interpolant I with

- $\operatorname{sig}(I) \subseteq \operatorname{sig}(C, \mathcal{O}) \cap \operatorname{sig}(C', \mathcal{O}').$
- $\mathcal{O} \cup \mathcal{O}' \models C \sqsubseteq I$.
- $\mathcal{O} \cup \mathcal{O}' \models I \sqsubseteq C'$.

Tableau-based algorithms for computing I for various DLs (including \mathcal{ALC}) developed in recent JAIR paper.

Issues: Size and Existence

In \mathcal{ALC} minimal interpolants can be of double exponential size.

Issues: Size and Existence

In \mathcal{ALC} minimal interpolants can be of double exponential size.

The OWL standard (and many ontologies) contains inclusions $R \sqsubseteq S$ between binary predicates.

Issues: Size and Existence

In \mathcal{ALC} minimal interpolants can be of double exponential size.

The OWL standard (and many ontologies) contains inclusions $R \sqsubseteq S$ between binary predicates.

Let S, R_1, R_2 be binary relations. and consider ontology \mathcal{O} .

Issues: Size and Existence

In \mathcal{ALC} minimal interpolants can be of double exponential size.

The OWL standard (and many ontologies) contains inclusions $R \sqsubseteq S$ between binary predicates.

Let S, R_1, R_2 be binary relations. and consider ontology \mathcal{O} .

 $\exists S. op$ is explicitly defined using $\{R_1, R_2\}$ by

```
\exists S.\top \equiv \exists (R_1 \cap R_2).\top.
```

This is, however, not in the OWL standard.

Assume \mathcal{O} is an ontology.

A partition $\Sigma_1, \ldots, \Sigma_n$ of $sig(\mathcal{O})$ is a decomposition of \mathcal{O} if there are $\mathcal{O}_1, \ldots, \mathcal{O}_n$ such that

- $\operatorname{sig}(\mathcal{O}_i) \subseteq \Sigma_i$;
- $\mathcal{O}_1 \cup \cdots \cup \mathcal{O}_n \equiv \mathcal{O}_n$

Assume \mathcal{O} is an ontology and $\Delta \subseteq \mathsf{sig}(\mathcal{O})$ a signature.

A partition $\Sigma_1, \ldots, \Sigma_n$ of $sig(\mathcal{O}) \setminus \Delta$ is a Δ -decomposition of \mathcal{O} if there are $\mathcal{O}_1, \ldots, \mathcal{O}_n$ such that

- $\operatorname{sig}(\mathcal{O}_i) \subseteq \Sigma_i \cup \Delta;$
- $\mathcal{O}_1 \cup \cdots \cup \mathcal{O}_n \equiv \mathcal{O}_n$

Assume \mathcal{O} is an ontology and $\Delta \subseteq \mathsf{sig}(\mathcal{O})$ a signature.

A partition $\Sigma_1, \ldots, \Sigma_n$ of $sig(\mathcal{O}) \setminus \Delta$ is a Δ -decomposition of \mathcal{O} if there are $\mathcal{O}_1, \ldots, \mathcal{O}_n$ such that

- $\operatorname{sig}(\mathcal{O}_i) \subseteq \Sigma_i \cup \Delta;$
- $\mathcal{O}_1 \cup \cdots \cup \mathcal{O}_n \equiv \mathcal{O}_n$

Problems:

• Is there a unique finest Δ -decomposition?

Assume \mathcal{O} is an ontology and $\Delta \subseteq \mathsf{sig}(\mathcal{O})$ a signature.

A partition $\Sigma_1, \ldots, \Sigma_n$ of $sig(\mathcal{O}) \setminus \Delta$ is a Δ -decomposition of \mathcal{O} if there are $\mathcal{O}_1, \ldots, \mathcal{O}_n$ such that

- $\operatorname{sig}(\mathcal{O}_i) \subseteq \Sigma_i \cup \Delta;$
- $\mathcal{O}_1 \cup \cdots \cup \mathcal{O}_n \equiv \mathcal{O}_n$

Problems:

- Is there a unique finest Δ -decomposition?
- Do decompositions in a given DL coincide with decompositions in SO?

Assume \mathcal{O} is an ontology and $\Delta \subseteq \mathsf{sig}(\mathcal{O})$ a signature.

A partition $\Sigma_1, \ldots, \Sigma_n$ of $sig(\mathcal{O}) \setminus \Delta$ is a Δ -decomposition of \mathcal{O} if there are $\mathcal{O}_1, \ldots, \mathcal{O}_n$ such that

- $\operatorname{sig}(\mathcal{O}_i) \subseteq \Sigma_i \cup \Delta;$
- $\mathcal{O}_1 \cup \cdots \cup \mathcal{O}_n \equiv \mathcal{O}_n$

Problems:

- Is there a unique finest Δ -decomposition?
- Do decompositions in a given DL coincide with decompositions in SO?
- Compute (unique finest) decomposition.

Parallel Interpolation (without Δ)

Assume $\mathcal{O}_1, \mathcal{O}_2$ and α with $\mathcal{O}_1 \cup \mathcal{O}_2 \models \alpha$ are given.

Parallel Interpolation (without Δ)

Assume $\mathcal{O}_1, \mathcal{O}_2$ and α with $\mathcal{O}_1 \cup \mathcal{O}_2 \models \alpha$ are given. A pair

 $\mathcal{O}_1', \mathcal{O}_2'$

is a parallel interpolant of $\mathcal{O}_1, \mathcal{O}_2$ and lpha if

- $\mathcal{O}_1'\cup\mathcal{O}_2'\modelslpha$;
- $\mathcal{O}_i \models \mathcal{O}'_i$;
- $\operatorname{sig}(\mathcal{O}'_i) \subseteq \operatorname{sig}(\mathcal{O}_i) \cap \operatorname{sig}(\alpha)$;

Parallel Interpolation (without Δ)

Assume $\mathcal{O}_1, \mathcal{O}_2$ and α with $\mathcal{O}_1 \cup \mathcal{O}_2 \models \alpha$ are given. A pair

 $\mathcal{O}_1', \mathcal{O}_2'$

is a parallel interpolant of $\mathcal{O}_1, \mathcal{O}_2$ and lpha if

- $\mathcal{O}_1' \cup \mathcal{O}_2' \models \alpha$;
- $\mathcal{O}_i \models \mathcal{O}'_i$;
- $\operatorname{sig}(\mathcal{O}'_i) \subseteq \operatorname{sig}(\mathcal{O}_i) \cap \operatorname{sig}(\alpha);$

Parallel interpolation: parallel interpolant exists if $\mathcal{O}_1 \cup \mathcal{O}_1 \models \alpha$, $sig(\mathcal{O}_1) \cap sig(\mathcal{O}_2) = \emptyset$, and $\mathcal{O}_1, \mathcal{O}_2$ have the same consequences over empty signature.

Parallel Interpolation

Non-trivial to prove because not closed under Boolean operators: \mathcal{ALC} and \mathcal{EL} have parallel interpolation.

Parallel Interpolation

Non-trivial to prove because not closed under Boolean operators: \mathcal{ALC} and \mathcal{EL} have parallel interpolation.

Parallel interpolation implies:

- There is a unique finest Δ -decomposition.
- Decompositions in DL coincide with decompositions in SO.
- Interpolants are axiomatizations of components.

Uniform interpolation

Standard interpolation: if $\mathcal{O} \models \alpha$, then there exists \mathcal{O}' with

- $\operatorname{sig}(\mathcal{O}') \subseteq \operatorname{sig}(\mathcal{O}) \cap \operatorname{sig}(\alpha)$;
- $\mathcal{O} \models \mathcal{O}'$;
- $\mathcal{O}' \models \alpha$.

Uniform interpolation

Standard interpolation: if $\mathcal{O} \models \alpha$, then there exists \mathcal{O}' with

- $\operatorname{sig}(\mathcal{O}') \subseteq \operatorname{sig}(\mathcal{O}) \cap \operatorname{sig}(\alpha);$
- $\mathcal{O} \models \mathcal{O}'$;
- $\mathcal{O}' \models \alpha$.

A uniform interpolant is an interpolant for all α with $sig(\alpha) \cap sig(\mathcal{O}) \subseteq \Sigma$ for a fixed Σ .

I understand that Craig really wanted uniform interpolants.

Uniform interpolation

Standard interpolation: if $\mathcal{O} \models \alpha$, then there exists \mathcal{O}' with

- $\operatorname{sig}(\mathcal{O}') \subseteq \operatorname{sig}(\mathcal{O}) \cap \operatorname{sig}(\alpha)$;
- $\mathcal{O} \models \mathcal{O}'$;
- $\mathcal{O}' \models \alpha$.

A uniform interpolant is an interpolant for all α with $sig(\alpha) \cap sig(\mathcal{O}) \subseteq \Sigma$ for a fixed Σ .

I understand that Craig really wanted uniform interpolants.

Definition: A uniform Σ -interpolant \mathcal{O}' of \mathcal{O} has the following properties:

- $\mathcal{O} \models \mathcal{O}'$;
- $\operatorname{sig}(\mathcal{O}') \subseteq \Sigma$;
- if $\mathcal{O} \models \alpha$ and $sig(\alpha) \cap sig(\mathcal{O}) \subseteq \Sigma$, then $\mathcal{O}' \models \alpha$.

In FO (and DLs) uniform interpolants do not always exist

Let

$$\mathcal{O} = \{A \sqsubseteq B, B \sqsubseteq \exists r.B\}$$

and $\Sigma = \{A, r\}$.

In FO (and DLs) uniform interpolants do not always exist

Let

$$\mathcal{O} = \{A \sqsubseteq B, B \sqsubseteq \exists r.B\}$$

and $\Sigma = \{A, r\}$.

Infinite "uniform Σ -interpolant" given by

 $\mathcal{O}' = \{A \sqsubseteq \text{ infinite } r \text{-chain}\}$

This cannot be axiomatized in FO or standard DLs.

In FO (and DLs) uniform interpolants do not always exist

Let

$$\mathcal{O} = \{A \sqsubseteq B, B \sqsubseteq \exists r.B\}$$

and $\Sigma = \{A, r\}$.

Infinite "uniform $\Sigma\text{-interpolant"}$ given by

 $\mathcal{O}' = \{A \sqsubseteq \text{ infinite } r\text{-chain}\}$

This cannot be axiomatized in FO or standard DLs.

 $\mathcal{ALC}\mu$ (modal μ -calculus) is an extension of \mathcal{ALC} with uniform interpolation.

Why uniform interpolants of ontologies?

• Re-use: from an ontology of size 300 000 one typically needs only a small fraction of its terms for an application. Work with the corresponding uniform Σ -interpolant.

Why uniform interpolants of ontologies?

- Re-use: from an ontology of size 300 000 one typically needs only a small fraction of its terms for an application. Work with the corresponding uniform Σ -interpolant.
- Ontology summary: a uniform interpolant summarises what an ontology says about Σ .

Why uniform interpolants of ontologies?

- Re-use: from an ontology of size 300 000 one typically needs only a small fraction of its terms for an application. Work with the corresponding uniform Σ -interpolant.
- Ontology summary: a uniform interpolant summarises what an ontology says about Σ .
- Predicate-Hiding: if one does not want to publish what the ontologies says about non- Σ -symbols.

Uniform interpolants for acyclic $\mathcal{EL}\textsc{-}\mathsf{TBoxes}$

For acyclic *EL*-TBoxes, uniform interpolants always exist.

Uniform interpolants for acyclic $\mathcal{EL}\textsc{-}\mathsf{TBoxes}$

For acyclic \mathcal{EL} -TBoxes, uniform interpolants always exist.

In the worst case, exponentially many axioms of exponential size required.

Uniform interpolants for acyclic \mathcal{EL} -TBoxes

For acyclic \mathcal{EL} -TBoxes, uniform interpolants always exist.

In the worst case, exponentially many axioms of exponential size required.

Proof that exponentially many axioms are required: Let

$$\mathcal{O} = \{A \equiv B_1 \sqcap \cdots \sqcap B_n\} \cup \{A_{ij} \sqsubseteq B_i \mid 1 \leq i, j \leq n\}.$$

and

$$\Sigma = \{A\} \cup \{A_{ij} \mid 1 \leq i, j \leq n\}.$$

Uniform interpolants for acyclic \mathcal{EL} -TBoxes

For acyclic \mathcal{EL} -TBoxes, uniform interpolants always exist.

In the worst case, exponentially many axioms of exponential size required.

Proof that exponentially many axioms are required: Let

$$\mathcal{O} = \{A \equiv B_1 \sqcap \cdots \sqcap B_n\} \cup \{A_{ij} \sqsubseteq B_i \mid 1 \leq i, j \leq n\}.$$

and

$$\Sigma = \{A\} \cup \{A_{ij} \mid 1 \leq i,j \leq n\}.$$

Then

$$\mathcal{O}' = \{A_{1j_1} \sqcap \dots \sqcap A_{nj_n} \sqsubseteq A \mid 1 \leq j_1, \dots, j_n \leq n\}$$

is a smallest uniform Σ -interpolant.

Exponential size axioms in uniform interpolants

Let

$$\mathcal{O}=\{A_i\sqsubseteq \exists r.A_{i+1}\sqcap \exists s.A_{i+1}\mid i\leq n\}$$
 and $\Sigma=\{A_0,r,s\}.$

Exponential size axioms in uniform interpolants

Let

$$\mathcal{O}=\{A_i\sqsubseteq \exists r.A_{i+1}\sqcap \exists s.A_{i+1}\mid i\leq n\}$$
 and $\Sigma=\{A_0,r,s\}.$

Then

$$\mathcal{O}' = \{A_0 \sqsubseteq \text{ binary tree of depth } n\}$$

is smallest uniform Σ -interpolant.

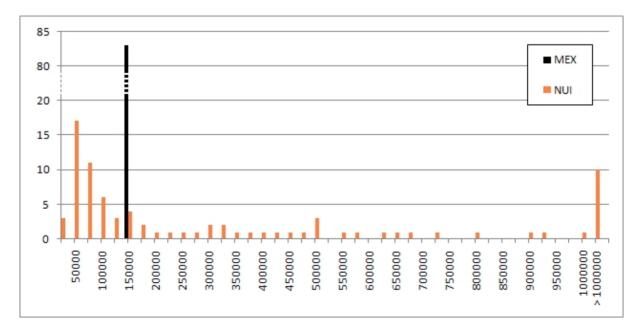
Computing uniform interpolants for SNOMED CT and NCI

100 randomly generated signatures.

$ \Sigma $	SNOMED CT	$ \Sigma $	NCI
2000	100.0%	5 000	97.0%
3 000	92.2%	10 000	81.1%
4000	67.0%	15000	72.0%
5000	60.0%	20 000	59.2%

Comparing the size of $\Sigma\text{-modules}$ and $\Sigma\text{-interpolants}$ for SNOMED CT

• Signatures containing 3 000 concept names and 20 role names



$\Sigma\text{-module}$

Let \mathcal{O} be an ontology and Σ a signature.

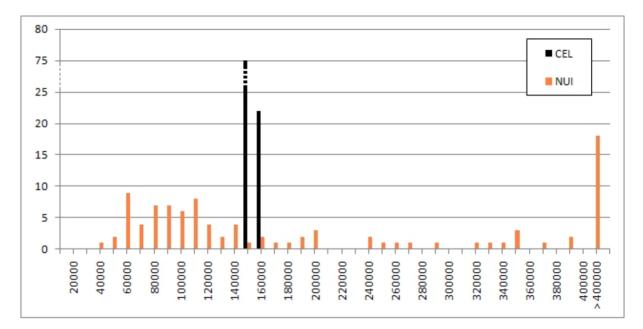
A Σ -module $\mathcal{M} \subseteq \mathcal{O}$ has the following property:

 $\mathcal{M}\models lpha \quad \Leftrightarrow \quad \mathcal{O}\models lpha$

for all α over Σ .

Comparing the size of $\Sigma\text{-modules}$ and $\Sigma\text{-interpolants}$ for NCI

• Σ contains 7 000 concept names and 20 role names



In \mathcal{EL} the existence of uniform interpolation for a given \mathcal{O} and Σ is ExpTime complete.

In \mathcal{EL} the existence of uniform interpolation for a given \mathcal{O} and Σ is ExpTime complete.

Uniform interpolants can be of triple exponential size in the worst case.

In \mathcal{EL} the existence of uniform interpolation for a given \mathcal{O} and Σ is ExpTime complete.

Uniform interpolants can be of triple exponential size in the worst case.

In \mathcal{ALC} the existence of uniform interpolation for a given \mathcal{O} and Σ is 2ExpTime complete.

In \mathcal{EL} the existence of uniform interpolation for a given \mathcal{O} and Σ is ExpTime complete.

Uniform interpolants can be of triple exponential size in the worst case.

In \mathcal{ALC} the existence of uniform interpolation for a given \mathcal{O} and Σ is 2ExpTime complete.

Uniform interpolants can be of triple exponential size in the worst case.

In \mathcal{EL} the existence of uniform interpolation for a given \mathcal{O} and Σ is ExpTime complete.

Uniform interpolants can be of triple exponential size in the worst case.

In \mathcal{ALC} the existence of uniform interpolation for a given \mathcal{O} and Σ is 2ExpTime complete.

Uniform interpolants can be of triple exponential size in the worst case.

Work on computing uniform interpolants at this workshop, IJCAR 2014, and KR 2014.

Where do the α come from?

Let

$$\mathcal{O} = \{A \sqsubseteq \exists r.B \sqcap \exists r.\neg B\}$$

and $\Sigma = \{A, r\}$.

Where do the α come from?

Let

$$\mathcal{O} = \{A \sqsubseteq \exists r.B \sqcap \exists r. \neg B\}$$

and $\Sigma = \{A, r\}$.

Then

$$\mathcal{O}' = \{A \sqsubseteq \exists r. \top\}$$

is a uniform Σ -interpolant of \mathcal{O} for \mathcal{ALC} concept inclusions.

Where do the α come from?

Let

$$\mathcal{O} = \{A \sqsubseteq \exists r.B \sqcap \exists r.\neg B\}$$

and $\Sigma = \{A, r\}$.

Then

$$\mathcal{O}' = \{A \sqsubseteq \exists r. \top\}$$

is a uniform Σ -interpolant of \mathcal{O} for \mathcal{ALC} concept inclusions.

This is not a uniform Σ interpolant for FO (or certain DLs).

\mathcal{EL} uniform interpolants are not always \mathcal{ALC} uniform interpolants

 $\mathcal{O} = \{ A \sqsubseteq \exists r.B, A_0 \sqsubseteq \exists r.(A_1 \sqcap B), E \equiv A_1 \sqcap B \sqcap \exists r.(A_2 \sqcap B) \}$

is an acyclic \mathcal{EL} -TBox. So uniform interpolants for \mathcal{EL} consequences always exist.

\mathcal{EL} uniform interpolants are not always \mathcal{ALC} uniform interpolants

 $\mathcal{O} = \{ A \sqsubseteq \exists r.B, A_0 \sqsubseteq \exists r.(A_1 \sqcap B), E \equiv A_1 \sqcap B \sqcap \exists r.(A_2 \sqcap B) \}$

is an acyclic \mathcal{EL} -TBox. So uniform interpolants for \mathcal{EL} consequences always exist.

However, for $\Sigma = \{A, r, A_0, A_1, E\}$, there is no uniform Σ -interpolant for \mathcal{ALC} consequences.

Other α

Important for ontology-based data access, where one uses queries q (e.g., conjunctive queries) to query data sets \mathcal{D} taking into account ontology \mathcal{O} :

 $\mathcal{O}\cup\mathcal{D}\models q$

Other α

Important for ontology-based data access, where one uses queries q (e.g., conjunctive queries) to query data sets \mathcal{D} taking into account ontology \mathcal{O} :

$$\mathcal{O}\cup\mathcal{D}\models q$$

Investigate existence and computation of \mathcal{O}' such that

- $\mathcal{O} \models \mathcal{O}'$;
- $\operatorname{sig}(\mathcal{O}') \subseteq \Sigma$;
- if $\mathcal{O} \cup \mathcal{D} \models q$ and $sig(D,q) \cap sig(\mathcal{O}) \subseteq \Sigma$, then $\mathcal{O}' \cup \mathcal{D} \models q$.

For \mathcal{EL} very similar to concept inclusions; for \mathcal{ALC} no results yet.

Conclusion

- Many potential applications of interpolation in Description Logic.
- Many theoretical results: existence of interpolants, size of interpolants, complexity of computing interpolants.
- Implemented algorithms and evaluation needed.

Literature

Beth Definability and Interpolation:

- Balder ten Cate, Enrico Franconi, Inan Seylan: Beth Definability in Expressive Description Logics. J. Artif. Intell. Res. (JAIR) 48: 347-414 (2013)
- Balder ten Cate, Willem Conradie, Maarten Marx, Yde Venema: Definitorially Complete Description Logics. KR 2006

Parallel Interpolation:

• Boris Konev, Carsten Lutz, Denis Ponomaryov, Frank Wolter: Decomposing Description Logic Ontologies. KR 2010

Uniform Interpolation:

- Boris Konev, Dirk Walther, Frank Wolter: Forgetting and Uniform Interpolation in Large-Scale Description Logic Terminologies. IJCAI 2009
- Carsten Lutz, Frank Wolter: Foundations for Uniform Interpolation and Forgetting in Expressive Description Logics. IJCAI 2011

- Carsten Lutz, Inan Seylan, Frank Wolter: An Automata-Theoretic Approach to Uniform Interpolation and Approximation in the Description Logic EL. KR 2012
- Nadeschda Nikitina, Sebastian Rudolph: ExpExpLosion: Uniform Interpolation in General EL Terminologies. ECAI 2012
- Patrick Koopmann, Renate A. Schmidt: Count and Forget: Uniform Interpolation of \mathcal{SHQ} -Ontologies. IJCAR 2014
- M. Ludwig and B. Konev. Practical uniform interpolation and forgetting for ALC TBoxes with applications to logical difference. In Principles of Knowledge Representation and Reasoning. Proceedings, 2014.
- Kewen Wang, Zhe Wang, Rodney W. Topor, Jeff Z. Pan, Grigoris Antoniou: Eliminating Concepts and Roles from Ontologies in Expressive Descriptive Logics. Computational Intelligence 30(2): 205-232 (2014)